CHESHIRE
ENGINEERING
CORPORATION

Neuralyst™

Version 1.4

N

User’s Guide
(October 1994)

Neural Network Technology

for Microsoft® Excel™




Neuralyst™ User’s Guide
by Yin Shih

Copyright © 1994 Cheshire Engineering Corporation. All rights reserved.
Printed in the United States of America

Editor: Shal Farley

Printing History:  October 1990: v1.1 Edition
March 1991: v1.2 Edition
January 1993: v1.3 Edition
October 1994: v1.4 Edition
March 1995: v1.4 Edition (errata)
March 2001: v1.4 Edition (PDF)
October 2001: v1.4 Edition (errata)

The information in this document is subject to change without notice
and should not be construed as a commitment by Cheshire
Engineering Corporation. Cheshire Engineering Corporation
assumes no responsibility for any errors that may appear in this
document.

The software described in this document is furnished under a license
and may be used or copied only in accordance with the terms of that
license (see page iv).

Trademark Notices

The EPIC logo and Neuralyst are trademarks of EPIC Systems
Corporation licensed to Cheshire Engineering Corporation.

Apple® and Macintosh™ are trademarks of Apple Computer
Corporation. IBM®, PC/XT", PC/IAT", PS/2", and PC/DOS" are
trademarks of IBM Corporation. Microsoft®, MS/DOS", Windows ",
and Excel” are trademarks of Microsoft Corporation.



Disclaimer Notice

Neuralyst is no substitute for real thinking or common sense. The user
should always review and check the results of Neuralyst's processing
and evaluate it against known references and standards.

The use of Neuralyst for investment, speculation, gambling, or other
similar or related purposes is at the user’s risk. Results generated by
Neuralyst are dependent on past information and there is no
guarantee that future results can be forecast or predicted by
Neuralyst. Trading in stocks, commodities and other securities or any
form of speculation or gambling is inherently risky and may result in
loss.

Warranty and Limitation of Liability

Cheshire Engineering Corporation (Cheshire) warrants the diskettes
on which the software is distributed and the documentation to be free
from defects in materials and workmanship for a period of ninety (90)
days from the date of purchase. Cheshire will replace any defective
diskette or documentation returned to Cheshire during the warranty
period. Replacement is the exclusive remedy for any such defects and
Cheshire shall have no liability for any other damage.

Cheshire disclaims all other warranties, expressed or implied,
including but not limited to implied warranties of merchantability
and fitness for any particular purpose.

In no event shall Cheshire be held liable for any damages whatsoever,
including without limitation, damages resulting from financial loss,
business interruption, loss of information or data, or any other
incidental or consequential damages resulting from the use of
Neuralyst, even if Cheshire has been advised of the possibility of such
damages.



License Agreement

The computer program(s) described in this document (Software) is
licensed by Cheshire Engineering Corporation (Cheshire) for use only
under the terms of this license. Cheshire reserves any rights not
expressly granted under this license.

You may make one copy, the Working copy, of the Software on any
magnetic computer media and you may use the Working copy to
execute the Software on one CPU at a time. There are no limits to the
number of users, but there should be no possibility that two or more
users could execute the Software simultaneously. You may make one
additional copy, the Archival copy, of the Software for backup
purposes only. The Archival copy may only be used to restore the
Working copy in the event it is damaged or becomes unreadable.

The Software and accompanying documentation are copyrighted and
remain the property of Cheshire. You may not rent, lease, resell for
profit, distribute, network, reverse engineer, decompile, disassemble,
modify, adapt, translate, or create derivative works based upon the
Software, documentation, or any part thereof.

This agreement is governed by the laws of the State of California.

Cheshire Engineering Corporation

650 Sierra Madre Villa Avenue, Suite 201
Pasadena, CA 91107

U.S.A.

+1 626 351 5493 Info@CheshireEng.com



Contents

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Introduction 1
1.1 Introduction for NewUsers . . . . . . ... ... ... 1
1.2 Changes and ImprovementsinV14 . .. .. ... .. 2

Installing Neuralyst 5
2.1 AboutthisManual . . .. ... ... .......... 5
2.2  Neuralyst Distribution . . . . . . . .. ... ..... 6
2.3 System Requirements . . . . . ... ... ... .... 6
2.4 Installation Procedure . . . ... ... ........ 8
2.5 The First Neuralyst Session . . . . ... ... ... 11

Basic Concepts for Neural Networks 15
3.1 RealNeurons . .. .................. 15
3.2  Neural Network Structure . . . . . ... ... ... 17
3.3  Neural Network Operation . . . ... ... .. ... 20
3.4 Neural Network Learning . . . .. ... ... ... 21

A Neuralyst Tutorial 25
4.1 StartingNeuralyst . . . ... ... ......... 25
4.2  Configuring the Neural Network . . . . . . ... .. 27
4.3 Running the Neural Network . . . . . ... ... .. 32
44 FinishingUp . . . .. ... ... ... ........ 37

Contents V



Chapter 5 Learning More About Neuralyst 39

Chapter 6

Chapter 7

Vi

Contents

5.1 Parity Generator — PARITY.XLS {Parity} . . . . .. 40
5.2  Paper-Rock-Scissors — PAPER.XLS {Paper Game} . . 44
5.3 Sine Wave — SINE.XLS{Sine} . . ... ... .. .. 45
5.4  Criminal Mugbook — MUGBOOK.XLS {Mug Book} . 48
5,5 Credit Rater — EZCREDIT.XLS {EZ Credit} . . . . . 52
5.6  Marketing Analyzer — FIzzY.XLS {Fizzy Cola} . . . . . 55
5.7 Fundamental Stock Analysis — AMETEK.XLS {Ametek} 58
5.8  Technical Stock Analysis — DJIAXLS {DJIA} . . . . 63
5.9 Shape Recognizer — SQUARE.XLS {Square} . . . . . 66

Advanced Neuralyst Topics 71
6.1 Inputand Output ValueRanges . . . . . . ... .. 71
6.2 Setting Network Size . . . . . .. ... ... .... 73
6.3 Learning Rate, Momentum, and Training Tolerance 74
6.4 Learning, Weights, and Multiple Solutions . . . . . 78
6.5 Some Causes of Poor Results . . . . .. ... ... 79
6.6  Experimenting with Enhanced Neural Networks . 83
6.7 Excel Chartsand Neuralyst . . . . . .. ... ... 88

Genetic Optimization of Neural Networks 91
7.1 Genetic Technology . . . . . ... ... ....... 91
7.2  Operation of the Genetic Supervisor . . . ... .. 92
7.3  Structure Strings and Features . . . . . .. .. .. 93
7.4  Population Management . . . . . . . .. ... ... 96
7.5 GeneticOperators . . ... ... .......... 97
76 FitnessCriteria . . . . . . .. .. ... ....... 98
7.7  Genetic Supervisor Tutorial . . . . ... ... ... 99
7.8 Operating Techniques . . . . . ... ... ..... 103



Chapter 8 Neuralyst Operations Reference

8.1 Neural Network Configuration Menu

8.2  Neural Network Operations Menu . .
8.3  Neuralyst Working Area . . . . . ..

Appendix A Help Me!

A.1 Installation Problems . . . . ... ..
A.2 Neuralyst Problems . . . .. ... ..

Appendix B Error Messages

Appendix C Cheshire Customer Service

Appendix D Neuralyst Specifications

D.1 Windows Specifications . . . . . . ..
D.2 Macintosh Specifications . . . . . ..

Appendix E Macro Interface Specifications

E.1  Neuralyst/Excel Macro Interface . . .
E.2 Referencing the Working Area . . . .
E.3 Windows DDE Interface. . . . . . ..
E.4 Macintosh Apple Events Interface . .

Contents

105

105
119
142

159

159
162

167

187

189

189
190

Vil



Appendix F Reading List & Bibliography

Appendix G Trader’s Macro Library

viil

G.1
G.2
G.3
G4
G.5
G.6

Contents

Support for Technical Analysis . . . . .. ... ..
Enabling and Disabling the Library . . . . . . . ..
Using the Library . . . . ... ... ... .....
Updating Technical Indicators . . . . . . ... ..
TMLErrorMessages . . . . . . . ... ... ....
Technical Analysis Literature . . . . . ... .. ..



Chapter 1
Introduction

1.1

Introduction for New Users

Congratulations! You are about to experience a new dimension in
spreadsheet processing. Neuralyst adds an unprecedented capability
to Excel spreadsheets, providing for open-ended analysis of
spreadsheet data and the recognition of associations between data you
may have thought to be unrelated.

Up to now spreadsheets (and computers) have provided powerful
analysis capabilities, but they were limited by people’s ability to
envision relationships and express them in spreadsheet models (and
computer programs). If a relationship was not realized, then it did not
appear on the spreadsheet and resulting tables or charts. Even if a
relationship was suspected, it may have been difficult to prove or
analyze the effects.

Neuralyst extends the capabilities of spreadsheets in this area using
the technology of neural networks, also called neural nets. Neural
networks are simulations of collections of model biological neurons.
These are not simulations of real neurons in that they do not model
the biology, chemistry, or physics of a real neuron. They do model
several aspects of the information combining and pattern recognition
behavior of real neurons in a simple yet meaningful way.

This neural modeling has shown incredible capability for emulation,
analysis, prediction, and association. Neural networks can be used in
a variety of powerful ways: to learn and reproduce rules or operations
from given examples; to analyze and generalize from sample facts and

1.1 Introduction for New Users 1



make predictions from these; or to memorize characteristics and
features of given data and to match or make associations from new
datato the old data. Neural networks can be used to make strict yes-no
decisions or used to produce more critical, finely-valued judgments.

In this version of Neuralyst, neural network technology is combined
with genetic optimization technology to allow you to develop the
optimal neural networks to solve your modeling problems. Genetic
optimization uses an evolution-like process to refine and enhance the
structure of a neural network until it can model your problem in the
most efficient way.

Cheshire has integrated neural network technology and genetic
optimization technology with spreadsheet technology, combining a
comfortable user interface and powerful data management
capabilities with this new approach to data processing. All this is
available to you now in Neuralyst.

1.2 Changes and Improvements in V1.4

2

There are many improvements and new features in Neuralyst V1.4.
First, there are some slight changes in the format of the Neuralyst
Working Area. However, all old V1.x worksheets will be recognized by
V1.4 and they can be automatically updated to the format of the new
Working Area without any loss of information.

V1.4 now requires Excel 4.0 at a minimum. It works with Excel 5.0,
but that is not a requirement. V1.4 now supports both the U.S. and
international versions of Excel with a single collection of macro sheets.

Several improvements have been made in the Config menu that
enhance your ability to manage Neuralyst's interpretation of data. A
new command, Set Mode Flag Column, has been added as a
replacement to Set TestFlag Column. Check Section 8.1.6 for
details.

As a companion to Set Mode Flag Column, the command
Set Mode Rows has also been provided. This command provides
three options to allow Neuralyst to set certain rows of the Mode Flag

1.2 Changes and Improvements in V1.4



column to control the minimum range of data, maximum range of
data, and to define symbolic names for data. Check Section 8.1.7 for
details.

The final addition to the Config menu is the Edit Mode Lists
command. This command is also part of the new data management
features and allows you to set or edit symbolic names for data and set
minimum or maximum range limits. Check Section 8.1.10 for details.

There have been several enhancements in the Neural menu.
Set Enhanced Parameters has been modified with some
significant improvements. But, the real star of V1.4 is the addition of
two commands to support genetic optimization technology.

In Set Enhanced Parameters, the Activation Function control
panel has been enhanced, and two new control panels Calculation
Method and Scaling Margin have been added. Two new functions are
now available in the Activation Function control panel, Hyperbolic
Tangent and Augmented Ratio of Squares. The Calculation Method
control panel now allows you to select Fixed Point or Floating Point
computation of neural networks. This allows you to trade off high
speed against high precision. Finally, the Scaling Margin control
panel allows you to adjust the headroom available in the data
rescaling algorithms used by Neuralyst, thus allowing you more
control of how your data is represented. Check Section 8.2.6 for details
on all of the above.

Two new Neural menu commands are the keys to unlocking the new
genetic optimization technology now integrated into Neuralyst,
Set Genetic Parameters and Run Genetic Supervisor. These
commands allow initialization and control of the Neuralyst Genetic
Supervisor. See Chapter 7 for a better understanding of how genetic
technology works and Sections 8.2.7 and 8.2.4 for details on the
commands.

Finally, the connection weight limit has been increased from 10,920
to more than 131,000. This will allow neural networks more than ten
times as complex to be developed.

Overall, we believe that we have provided a combination of
enhancements that should improve the neural network training

1.2 Changes and Improvements in V1.4 3



process, allow for more sophisticated neural networks to be built, and
improved ease of use. We hope you agree.

These changes and additions were the results of many comments
received from current users. While not all suggestions were
implemented in this version, we believe we have listened carefully
and selected a worthwhile set for implementation. Please let us know
how we did — and start sending in suggestions for the next version!

4 1.2 Changes and Improvements in V1.4



Chapter 2
Installing Neuralyst

2.1 About this Manual

This manual is used for both the Microsoft Windows and
Apple Macintosh versions of Neuralyst (including Win32 and Power
Macintosh). Generally, Neuralyst operations in either version are
indistinguishable, except for file names, path versus folder names,
and other features that are dependent on the behavior of the
respective operating systems.

If you are experienced with Windows or the Macintosh, then the spirit
of the directions for usage and operation given in this manual can be
taken and applied to either system.

However, to minimize confusion, we have generally provided
instructions or filenames for each version. These computer specific
items are identified in one of two ways. If there is material of just a
few words in length, then the Windows version is in plain text and the
Macintosh version is enclosed immediately after in curly braces, i.e.
{}. If there is material that is more extensive, then it is presented as
alternative sections or subsections (Windows version first, then
Macintosh version), as appropriate.

The screen snapshots shown in this manual are all taken from the
Windows version of Neuralyst. If you have the Macintosh version of
Neuralyst, the windows, control boxes, scroll bars, and so on will
appear somewhat different, but the worksheet data should appear the
same.

2.1 About this Manual 5



2.2 Neuralyst Distribution

The Neuralyst distribution you have received should contain the
following items:

1. Neuralyst User’'s Guide
2. Neuralyst Distribution Disk
3. Software License Agreement
4. User Registration Form

If you do not have all the items listed then please contact Cheshire
Customer Service immediately. See Appendix C in this guide for the
recommended call-in procedure.

For your convenience, the Neuralyst distribution disk is not
copy-protected. You may make an archival copy of the disk, install the
software and use it as described in this guide and with the single-use
restrictions specified in the Software License Agreement. Please
observe these restrictions. Cheshire has made a considerable
investment in the development of the Neuralyst program and
violations of the copyright and software license are not trivial matters.

Each Neuralyst distribution disk has a label with a unique serial
number printed on it. Protect this serial number and do not allow
anyone to copy it or the software. The serial number is registered to
you as the original purchaser or by your submission of the User
Registration Form if you did not receive Neuralyst directly from
Cheshire. This serial number will be required to validate customer
support access and future software update privileges.

2.3 System Requirements

6

Neuralyst requires certain hardware and software configurations to
run properly.

A math co-processor is not necessary. For most of its calculations
Neuralyst defaults to using highly optimized fixed-point arithmetic

2.3 System Requirements



operations because in most computer systems they operate faster than
the comparable operations using floating-point. If desired, the user
can select floating-point operation for Neuralyst instead of
fixed-point. A math co-processor will not significantly increase the
performance of Neuralyst's computations using fixed-point, but it will
increase the performance of Neuralyst's computations if floating-point
is selected and it will increase the performance of Excel's
computations.

2.3.1 Windows System Requirements

The Windows version of Neuralyst has been written to work on IBM
personal computers (PC/XT, PC/AT, and PS/2) and compatibles.
Neuralyst also requires Microsoft Windows Version 3.1 and Microsoft
Excel Version 4.0 (or higher versions) in order to run. In general any
system capable of running Windows and Excel will be able to support
Neuralyst.

Neuralyst places a heavy computational load on a system. Therefore,
higher performance systems, while not necessary, will reduce the
processing (and corresponding waiting) time needed for Neuralyst to
analyze a problem. In general, Neuralyst will perform best on 386,
486, and Pentium systems, while high-speed 80286 systems will
probably work acceptably.

A math co-processor (80287, 80387 or 80487) is optional.

2.3.2 Macintosh System Requirements

The Macintosh version of Neuralyst has been written to work on Apple
Macintosh computers. Neuralyst also requires Microsoft Excel
Version 4.0 (or higher versions) in order to run. In general any
Macintosh capable of running Excel will be able to support Neuralyst.

Neuralyst places a heavy computational load on a system. Therefore,
higher performance systems, while not necessary, will reduce the
processing (and corresponding waiting) time needed for Neuralyst to
analyze a problem. In general, Neuralyst will perform best on 68030,
68040, or PowerPC systems. A 68020 will probably work acceptably.
68000 systems will work, but the performance will be marginal.

A math co-processor (68881 or 68882) is optional.

2.3 System Requirements 7



2.4

8

Installation Procedure

Neuralyst is integrated with Excel. This User’'s Guide assumes you
are familiar with Excel and have all the materials and documentation
necessary to run Excel. You should be familiar with the operations
and commands available in Excel before proceeding to install and use
Neuralyst. Cheshire Customer Service will not be able to answer any
guestions involving Excel set-up or operations.

If you have a PC follow the installation procedure described in
Section 2.4.1. If you have a Macintosh follow the installation
procedure described in Section 2.4.2.

2.4.1 Windows Installation Procedure

If you are reinstalling Neuralyst or installing a new version over an
old version, then you need to make sure that you have exited Windows
at least once since the last time you ran Neuralyst, otherwise Windows
will try and run the old version of Neuralyst when you start Neuralyst
after the install. Once this has been done, then you may proceed with
the installation as described.

If you are installing Neuralyst for the first time, make sure that
Windows and Excel are installed on your computer. If this is not so,
then follow the respective installation procedures for each program as
described by the vendor. After this has been done, you might need to
make sure that Excel is registered in the Windows WIN. INI file so that
Windows will be able to find Excel regardless of which directory is
currently active. This will have been done automatically by the Excel
installation, if it was done normally.

Turn on your PC and allow it to go through its normal boot procedure.
If the boot procedure does not start Windows immediately, do so
now — you must be in Windows to install Neuralyst correctly. Once
your PC has concluded its boot sequence and Windows is loaded, insert
the Neuralyst distribution disk in drive A.

2.4 Installation Procedure



From the Program Manager’s File menu choose the Run command
to run the install program. Enter the text:

A:INSTALL.EXE

and confirm OK to activate the install program. If your floppy is not
drive A, then change the drive name to the correct name first, for
example, change the text to B: INSTALL.EXE if you use drive B.

The installation program will now run. It will prompt you for the drive
and directory that will be the target for the installation. This is
defaulted to C: \NEURLYST. If your hard drive is not C, then edit the entry
to show the proper drive name. It is recommended that \NEURLYST be
used as the destination directory. Confirm OK when you have set the
destination.

The installation program will now move the required Neuralyst
program files and the example Neuralyst worksheet files to the
C:\NEURLYST directory and register the Neuralyst program icon with
Program Manager. The Neuralyst icon will appear in the Windows
Applications Program Group. If there is no Windows Applications
Program Group, then the install program will create a new Program
Group called Neuralyst.

When the installation is complete, the installation program will exit
and return you to Windows. If there are any errors in the installation
process the program will exit, but an error report will be generated
first and require your acknowledgment before the exit. In the case of
error, you will have to correct the problem before trying the
installation procedure again. See Appendix A for help with any
problems you may encounter during installation.

See Appendix G for instructions on how to install the supplementary
Trader’'s Macro Library. If you have purchased an optional library
from Cheshire to integrate with Neuralyst, see the instructions
included with each optional library for any special installation
instructions.

Once the installation procedure is complete, you may use Neuralyst
as described in the tutorial session shown in Chapter 4. But first, let's
check to see if Neuralyst is working. Proceed to Section 2.5.

2.4 Installation Procedure 9



10

2.4.2 Macintosh Installation Procedure

If you are installing Neuralyst for the first time, make sure that Excel
is installed on your computer. If this is not so, then follow the
installation procedure for Excel as described by Microsoft. With this
done, you are ready to proceed with the Neuralyst installation.

Turn on your Macintosh and allow it to go through its normal boot
procedure. Once your Macintosh has concluded its boot sequence,
insert the Neuralyst distribution disk in a floppy disk drive.
Double-click on the disk icon labeled Neuralyst Distribution to show
the disk contents, which will be a folder labeled Neuralyst. Select this
folder and drag it to your hard disk to copy the contents of the folder.
The Neuralyst folder may be copied to any area of your hard disk.

See Appendix G for instructions on how to install the supplementary
Trader’'s Macro Library. If you have purchased an optional library
from Cheshire to integrate with Neuralyst, see the instructions
included with each optional library for any special installation
instructions.

Once the installation procedure is complete, you may use Neuralyst
as described in the tutorial session shown in Chapter 4. But first, let's
check to see if Neuralyst is working. Proceed to the next section.

2.4 Installation Procedure



2.5 The First Neuralyst Session
B PogamManager [E

File Options Window Help

[=]

File Mal

Control A géi;;

Meuralyst 1.4

FIF Ed

[ &

Syze

o —
||

«[ »

Figure 2-1 Neuralyst Icon Windows version

Let's check Neuralyst out. If you are running from a PC, start from
the Windows Program Manager and find the Neuralyst icon.
Double-click on the Neuralyst icon to start execution. {If you are
running from a Macintosh, start from the Neuralyst folder.
Double-click on the Excel macro file named Neuralyst to start
execution — NOT the Neuralyst Lib icon.}

First Excel and then Neuralyst will be loaded. You will see the title
screens for each appear in sequence. When both have appeared,
Neuralyst is ready to run. The environment with which you will
interact is primarily Excel’s, but there will be new commands that
relate to Neuralyst operations.

From the File menu choose the Open command. Find the Neuralyst
directory and move to that, if you are not already in it. There will be

2.5 The First Neuralyst Session 11



12

a number of example Neuralyst worksheets listed. Find the one
named LOGIC.XLS {Logic} and load it by double-clicking on it.

Excel will now open a window that appears as shown in Figure 2-2.

Microsoft Excel - LOGIC.XLS &
=| File Edit View Insert Format Tools Data Window Neural Config Help 2
Ll=g) sl v] [ [Ba]d) o] o] (=] A) IR aBlalex [s][9]x)
A1 |21 | Computer Logic Trainer
AlBfclp [EJF [G[H [ 1 [J [k [ M | B
1 _|Compiter Logic Trainer Neuralyst (Th) Yersion 1.4 |
| 2 [Copyright (C) 1994, Cheshire Engineering Corp Copytight © 1934 Cheshire]
3
|4 |fepuis Fargets Oertguts MNetwork Run Statistics
| 5 | A4 | A5 OR  AND EXOR OR | AND EXOR 0 RMS Errar
L I 0 0 0 0 Mumber of Dat
17 ] 0 1 1 0 1 0 Mumber Right
L& [ 1 I 1 0 1 0 Mumber Wrong
1 9] 1 1 1 1 0 0% Percent Right
110 | 0% PercentWrong
111 | 0 Training Epac
12
113 | Metwark Parameters
1 14 | 1 Leaming rate
115 | 0.9 tMomentum
|16 | 0 Input Moise
117 | 0.1 Training Talers
|18 | 0.3 Testing Tolera
19 50 Epochs per Up|
[2n | 0 Fnoch Limit |®
4[> [, LOGIC IEIN| +
Ready [ mNom[ [ [

Figure 2-2 LOGIC.XLS {Logic} Example

LOGIC.XLS {Logic} defines three of the most basic operations for
computer logic circuits. In computer design, conditions or events are
represented by binary values, 0 or 1, indicating off/on, false/true, or
absence/presence of these conditions or events. Most of the time
computer circuits operate with two or more conditions or events as
inputs and use these to form a new condition or event that will be used
as an input in a succeeding operation.

For example, on row 7 of the example, In-A has the value 0 and In-B
has the value 1. Under the Targets area are three columns, D, E, and
F. These represent three different rules, OR, AND, and EXOR. OR means
“either or both inputs must 1 for the output to be 1”, AND means “both
inputs must be 1 for the output to be 1” and EXOR means “either input,
but not both, must be 1 for the output to be 1”. In the case of row 7,

2.5 The First Neuralyst Session



the OR rule produces 1, the AND rule produces 0 and the EXOR rule
produces 1. Each of the four rows, 6, 7, 8, and 9 represent a different
set of possible input combinations. With four combinations and three
rules, there are a total of 12 possible input-output combinations.

The Inputs and Targets areas represent the information that is known
and to which the neural network will be applied. The next area,
designated Outputs, shows all 0's. These are the current outputs of
the neural network, which have no correlation to the values in the
Targets area prior to the application of the neural network.

You will notice two new menu items for Excel in addition to the
example worksheet. These are the Neural and Config menus; which
are the operating interface to Neuralyst. These will be discussed in
much greater depth later.

[If you have a Macintosh with a small screen, then Neuralyst will name
its menus N. and C., rather than Neural and Config, to save space.
If you have a Macintosh, System 7, and a small screen, the normal
Neuralyst interface will not work well; see Appendix A for instructions
on how to manage this configuration.]

For now, pull down the Neural menu and note the first line,
Reload Network. Move the pointer to the line and release the mouse
button to activate the command. Excel will show an hourglass {watch}
cursor for a moment and status messages will flash across the bottom
in the Status Display area. The neural network has now been loaded
to the initial configuration saved on the worksheet.

[If you normally leave the Excel Calculation mode set to Manual, be
sure to set it to Automatic when working with Neuralyst. Some
initialization operations and the statistical information Neuralyst
reports to you while executing will be incorrect if Automatic
Calculation is not set.]

Pull down the Neural menu again. This time activate the
Train Network command. This sets the neural network to work. As
time progresses, the cell L5, labeled RMS Error, will be highlighted
and you will see its value steadily decreasing. The lower this value,
the better the neural network has learned the characteristics of the
data presented to it. After some time (depending on the speed of your
processor) Neuralyst will stop operations and the Outputs area will

2.5 The First Neuralyst Session 13



be updated. The values now shown represent the outputs of the neural
network and will match the corresponding values in the Targets area.

Neuralyst is working! It has learned all three rules for these input
combinations and is now able to duplicate the rules presented to it.

Let's take a moment to understand neural networks better and what
this example means before we try out more examples. For now, use
Exit {Quit} from the File menu to exit Excel, but don't save the
changes when asked.

14 2.5 The First Neuralyst Session



Chapter 3
Basic Concepts for Neural Networks

3.1 Real Neurons

Let’s start by taking a look at a biological neuron. Figure 3-1 shows
such a neuron.

Hillock

Boutons

Figure 3-1 A Biological Neuron

A neuron operates by receiving signals from other neurons through
connections, called synapses. The combination of these signals, in
excess of a certain threshold or activation level, will result in the
neuron firing, that is sending a signal on to other neurons connected
to it. Some signals act as excitations and others as inhibitions to a
neuron firing. What we call thinking is believed to be the collective
effect of the presence or absence of firings in the pattern of synaptic
connections between neurons.

3.1 Real Neurons 15



16

This sounds very simplistic until we recognize that there are
approximately one hundred billion (100,000,000,000) neurons each
connected to as many as one thousand (1,000) others in the human
brain. The massive number of neurons and the complexity of their
interconnections results in a “thinking machine”, your brain.

Each neuron has a body, called the soma. The soma is much like the
body of any other cell. It contains the cell nucleus, various
bio-chemical factories and other components that support ongoing
activity.

Surrounding the soma are dendrites. The dendrites are receptors for
signals generated by other neurons. These signals may be excitatory
or inhibitory. All signals present at the dendrites of a neuron are
combined and the result will determine whether or not that neuron
will fire.

If a neuron fires, an electrical impulse is generated. This impulse
starts at the base, called the hillock, of a long cellular extension, called
the axon, and proceeds down the axon to its ends.

The end of the axon is actually split into multiple ends, called the
boutons. The boutons are connected to the dendrites of other neurons
and the resulting interconnections are the previously discussed
synapses. (Actually, the boutons do not touch the dendrites; there is
a small gap between them.) If a neuron has fired, the electrical
impulse that has been generated stimulates the boutons and results
in electrochemical activity which transmits the signal across the
synapses to the receiving dendrites.

At rest, the neuron maintains an electrical potential of about 40-60
millivolts. When a neuron fires, an electrical impulse is created which
is the result of a change in potential to about 90-100 millivolts. This
impulse travels between 0.5 to 100 meters per second and lasts for
about 1 millisecond. Once a neuron fires, it must rest for several
milliseconds before it can fire again. In some circumstances, the
repetition rate may be as fast as 100 times per second, equivalent to
10 milliseconds per firing.

Compare this to a very fast electronic computer whose signals travel
at about 200,000,000 meters per second (speed of light in a wire is 2/3
of that in free air), whose impulses last for 10 nanoseconds and may

3.1 Real Neurons



repeat such an impulse immediately in each succeeding
10 nanoseconds continuously. Electronic computers have at least a
2,000,000 times advantage in signal transmission speed and
1,000,000 times advantage in signal repetition rate.

It is clear that if signal speed or rate were the sole criteria for
processing performance, electronic computers would win hands down.
What the human brain lacks in these, it makes up in numbers of
elements and interconnection complexity between those elements.
This difference in structure manifests itself in at least one important
way; the human brain is not as quick as an electronic computer at
arithmetic, but it is many times faster and hugely more capable at
recognition of patterns and perception of relationships.

The human brain differs in another, extremely important, respect
beyond speed; it is capable of “self-programming” or adaptation in
response to changing external stimuli. In other words, it can learn.
The brain has developed ways for neurons to change their response
to new stimulus patterns so that similar events may affect future
responses. In particular, the sensitivity to new patterns seems more
extensive in proportion to their importance to survival or if they are
reinforced by repetition.

3.2 Neural Network Structure

Neural networks are models of biological neural structures. The
starting point for most neural networks is a model neuron, as in
Figure 3-2. This neuron consists of multiple inputs and a single
output. Each input is modified by a weight, which multiplies with the
input value. The neuron will combine these weighted inputs and, with
reference to a threshold value and activation function, use these to
determine its output. This behavior follows closely our understanding
of how real neurons work.

While there is a fair understanding of how an individual neuron
works, there is still a great deal of research and mostly conjecture
regarding the way neurons organize themselves and the mechanisms
used by arrays of neurons to adapt their behavior to external stimuli.

3.2 Neural Network Structure 17



18

D8 el

Sigmoid

Figure 3-2 A Model Neuron

There are a large number of experimental neural network structures
currently in use reflecting this state of continuing research.

In our case, we will only describe the structure, mathematics and
behavior of that structure known as the backpropagation network.
This is the most prevalent and generalized neural network currently
in use. If the reader is interested in finding out more about neural
networks or other networks, please refer to the material listed in
Appendix F.

To build a backpropagation network, proceed in the following fashion.
First, take a number of neurons and array them to form a layer. A
layer has all its inputs connected to either a preceding layer or the
inputs from the external world, but not both within the same layer. A
layer has all its outputs connected to either a succeeding layer or the
outputs to the external world, but not both within the same layer.

Next, multiple layers are then arrayed one succeeding the other so
that there is an input layer, multiple intermediate layers and finally
an output layer, as in Figure 3-3. Intermediate layers, that is those
that have no inputs or outputs to the external world, are called
hidden layers. Backpropagation neural networks are usually

3.2 Neural Network Structure



fully connected. This means that each neuron is connected to every
output from the preceding layer or one input from the external world

in1
in2
out
in3
in4
input hidden output
layer layer layer

Figure 3-3 Backpropagation Network

if the neuron is in the first layer and, correspondingly, each neuron
has its output connected to every neuron in the succeeding layer.

Generally, the input layer is considered a distributor of the signals
from the external world. Hidden layers are considered to be
categorizers or feature detectors of such signals. The output layer is
considered a collector of the features detected and producer of the
response. While this view of the neural network may be helpful in
conceptualizing the functions of the layers, you should not take this
model too literally as the functions described may not be so specific or
localized.

With this picture of how a neural network is constructed, we can now
proceed to describe the operation of the network in a meaningful
fashion.

3.2 Neural Network Structure 19



3.3 Neural Network Operation

20

The output of each neuron is a function of its inputs. In particular,
the output of the jth neuron in any layer is described by two sets of
equations:

Uj =D (Xi* wij [Eqn 3-1]
and
Yj = Fth (Uj + tj) [Ean 3-2]

For every neuron, J, in a layer, each of the i inputs, X;, to that layer is
multiplied by a previously established weight, wjj. These are all
summed together, resulting in the internal value of this operation, U;.
This value is then biased by a previously established threshold value,
tj, and sent through an activation function, Fw. This activation
function is usually the sigmoid function, which has an input to output
mapping as shown in Figure 3-4. The resulting output, Yj, is an input
to the next layer or it is a response of the neural network if it is the
last layer. Neuralyst allows other threshold functions to be used in
place of the sigmoid described here. See Section 6.6 for details.

output |

Input

(Negative) 0 (Positive)
Figure 3-4 Sigmoid Function

In essence, Equation 3-1 implements the combination operation of the
neuron and Equation 3-2 implements the firing of the neuron.

3.3 Neural Network Operation



From these equations, a predetermined set of weights, a
predetermined set of threshold values and a description of the
network structure (that is the number of layers and the number of
neurons in each layer), it is possible to compute the response of the
neural network to any set of inputs. And this is just how Neuralyst
goes about producing the response. But how does it learn?

3.4 Neural Network Learning

Figure 3-5 Neuron Weight Adjustment

Learning in a neural network is called training. Like training in
athletics, training in a neural network requires a coach, someone that
describes to the neural network what it should have produced as a
response. From the difference between the desired response and the
actual response, the error is determined and a portion of it is
propagated backward through the network. At each neuron in the
network the error is used to adjust the weights and threshold values
of the neuron, so that the next time, the error in the network response
will be less for the same inputs.

This corrective procedure is called backpropagation (hence the name
of the neural network) and it is applied continuously and repetitively

3.4 Neural Network Learning 21



22

for each set of inputs and corresponding set of outputs produced in
response to the inputs. This procedure continues so long as the
individual or total errors in the responses exceed a specified level or
until there are no measurable errors. At this point, the neural network
has learned the training material and you can stop the training
process and use the neural network to produce responses to new
input data.

[There is some heavier going in the next few paragraphs. Skip ahead
if you don't need to understand all the details of neural network
learning.]

Backpropagation starts at the output layer with the following
equations:

Wij = Wjj + LR * gj * X [Eqgn 3-3]
and
&j = Yj * (1-Y)) * (dj-Y)) [Eqn 3-4]

For the ith input of the jth neuron in the output layer, the weight w;;
is adjusted by adding to the previous weight value, w’j, a term
determined by the product of a learning rate, LR, an error term, g;,
and the value of the ith input, X;. The error term, g;, for the jth neuron
is determined by the product of the actual output, Y, its
complement, 1 - Yj, and the difference between the desired output, d;,
and the actual output.

Once the error terms are computed and weights are adjusted for the
output layer, the values are recorded and the next layer back is
adjusted. The same weight adjustment process, determined by
Equation 3-3, is followed, but the error term is generated by a slightly
modified version of Equation 3-4. This modification is:

&j = Yj * (1-Yj) # D (ek * Wijk) [Eqn 3-5]

In this version, the difference between the desired output and the
actual output is replaced by the sum of the error terms for each
neuron, K, in the layer immediately succeeding the layer being
processed (remember, we are going backwards through the layers so

3.4 Neural Network Learning



these terms have already been computed) times the respective
pre-adjustment weights.

The learning rate, LR, applies a greater or lesser portion of the
respective adjustment to the old weight. If the factor is set to a large
value, then the neural network may learn more quickly, but if there
is a large variability in the input set then the network may not learn
very well or at all. In real terms, setting the learning rate to a large
value is analogous to giving a child a spanking, but that is
inappropriate and counter-productive to learning if the offense is so
simple as forgetting to tie their shoelaces. Usually, it is better to set
the factor to a small value and edge it upward if the learning rate
seems slow.

In many cases, it is useful to use a revised weight adjustment process.
This is described by the equation:

Wij = W’ij + (1—M)*LR*Ej*Xi + M*(W’ij - W”ij) [Eqn 3-6]

This is similar to Equation 3-3, with a momentum factor, M, the
previous weight, w’jj, and the next to previous weight, w”jj, included
in the last term. This extra term allows for momentum in weight
adjustment. Momentum basically allows a change to the weights to
persist for a number of adjustment cycles. The magnitude of the
persistence is controlled by the momentum factor. If the momentum
factor is set to 0, then the equation reduces to that of Equation 3-3. If
the momentum factor is increased from 0, then increasingly greater
persistence of previous adjustments is allowed in modifying the
current adjustment. This can improve the learning rate in some
situations, by helping to smooth out unusual conditions in the training
set.

[Okay, that's the end of the equations. You can relax again.]

As you train the network, the total error, that is the sum of the errors
over all the training sets, will become smaller and smaller. Once the
network reduces the total error to the limit set, training may stop.
You may then apply the network, using the weights and thresholds
as trained.

It is a good idea to set aside some subset of all the inputs available
and reserve them for testing the trained network. By comparing the

3.4 Neural Network Learning 23



24

output of a trained network on these test sets to the outputs you know
to be correct, you can gain greater confidence in the validity of the
training. If you are satisfied at this point, then the neural network is
ready for running.

Usually, no backpropagation takes place in this running mode as was
done in the training mode. This is because there is often no way to be
immediately certain of the desired response. If there were, there
would be no need for the processing capabilities of the neural network!
Instead, as the validity of the neural network outputs or predictions
are verified or contradicted over time, you will either be satisfied with
the existing performance or determine a need for new training. In this
case, the additional input sets collected since the last training session
may be used to extend and improve the training data.

Now that we have an understanding of how a neural network
functions and what it may accomplish, let's get into a more detailed
Neuralyst session.

3.4 Neural Network Learning



Chapter 4
A Neuralyst Tutorial

4.1 Starting Neuralyst

To start Neuralyst, the PC should first be running Windows. Once you
have Windows active, Neuralyst may be started in one of two ways.
First, you may start by double-clicking on the Neuralyst icon in
Windows Program Manager. This will cause Excel to run followed
immediately by the loading of the Neuralyst package. Second, you
may start from within Excel: from the File menu choose the Open
command, move to the Neuralyst directory and select NEURLYST.XLM to
cause the Neuralyst package to load.

[For Windows, only one instance of Excel with Neuralyst should be
running at one time. If you start Neuralyst twice, the two instances
may interfere with each other. See Appendix A for more information.]

{Neuralyst may be started in one of two ways on the Macintosh. First,
you may start by double-clicking on the Excel macro file hamed
Neuralyst. This will cause Excel to run followed immediately by the
loading of the Neuralyst package. Second, you may start from within
Excel: from the File menu choose the Open command, move to the
Neuralyst folder, and select Neuralyst to cause the Neuralyst package
to load.}

Once Excel is running with the Neuralyst package loaded, from the
File menu you may choose the New command to create a new file or
the Open command to select the file to use.

Let's go ahead and open the file EXPLODE. XLS {ExpTode} in the Neuralyst
directory. You will see a window similar to that shown in Figure 4-1.

4.1 Starting Neuralyst 25



26

Note the two new menu items that have been added with the loading
of the Neuralyst package. These two new menus are Neural and
Config. These menus interface to Neuralyst and allow you to define
the problem and control the operations of Neuralyst.

Microsoft Excel - EXPLODE.XLS o
=| File Edit View Insert Format Tools Data Window Neural Config Help s
D=8 SIRY][£ 5@ ) (o]« (=] ~] 2HEY S]E]|8) 00— [+] [9]x?]
A1 (2] | Explosive Chemistry
A [B] C | D | E [F] & [H] 1 TJJ] K T%
1 |Explosiviz Chemistry :
2 [Copyright (C) 1994, Cheshire Engineering Corp
3
4 faputs Farget Ourigut
b | AMixdure Pot Nritrate | Charcosl Sulfvr Explodef  Explode? A
b
7 | 0.2 0.4 04 FIZZLE TRAIN
8 |#2 0.4 0.4 0.2 FIZZLE TRAIN
9 |#3 06 0.3 01 FIZZLE TRAIN
10 |#4 0.7 01 0.2 BOOkI TRAIN
11 |#5 0.7 0.05 0.25 FIZZLE TRAIN
12 |#6 075 0.2 0.05 FIZZLE TRAIN
13 |#7 0.8 01 01 BOOMI TRAIN
14 |#8 09 0.05 0.05 FIZZLE TRAIN
15 |#X1 0.7 0.3 0 FIZZLE TEST
16 |#X2 075 01 015 BOOMI TEST
17 |[#43 0.95 0.025 0.025 FIZZLE TEST
18 FIZZLE.BOOMI SYMEO
19 b
] 4[> EXPLODE Tl 1 »
Reary | [ MM | ]

Figure 4-1 EXPLODE.XLS {Explode}

Now, let's take a look at the worksheet. EXPLODE.XLS {Explode} is a
representation of a series of chemistry experiments. A young chemist
has compounded mixtures #1-8 using the proportions of Potassium
Nitrate, Charcoal, and Sulfur shown. For each of these mixtures he
has determined whether or not that mixture will explode. This is
summarized in the first eight rows of the Explode! column. For
example, row 9 shows that a mixture of 60% Potassium Nitrate, 30%
Charcoal, and 10% Sulfur did not explode (the value in the column
Explode! is FizzLE), while row 10 shows that a mixture of 70%
Potassium Nitrate, 10% Charcoal, and 20% Sulfur did explode (the
value in the Explode! column is BooM!!).

4.1 Starting Neuralyst



[The chemistry rules in the world of EXPLODE.XLS {Explode} do not
correspond to the real world. If you really want to learn how to make
gunpowder, you will have to find the formula elsewhere!]

However, his lab manager has gotten a little tired of paying for all the
broken glassware and has asked him to cut the experiments short,
before he has had a chance to test compounds #X1-X3. Does he have
enough information from the previous experiments to make an
analysis of whether the proportions of the three chemicals in these
three mixtures will result in an explosion?

Neuralyst can be used to help this young chemist analyze his results.

4.2 Configuring the Neural Network

Neuralyst cannot work with a completely unorganized
conglomeration of facts. For a problem to be presented to Neuralyst,
it should be organized as instances, examples or cases, consisting of
related data or facts including known or expected results and goals.

Within this context, Neuralyst expects that a certain number of rows,
of all the rows of the worksheet, will represent each instance of a
problem. If that number is 1, then each row constitutes a separate
instance. If that number is greater than 1, then that many rows are
taken together to constitute each separate instance. In the case of
EXPLODE.XLS {Explode}, the data has been organized into individual
rows. Each of rows 7 through 17 is used to describe a different mixture
in this series of experiments. The first eight, rows 7 through 14,
represent instances whose results are known; the next three, rows 15
through 17, represent instances that we wish to predict after neural
network training on the first eight. The last row with data, row 18, is
a special row which is used to define the valid symbols,
<FIZZLE, BooM!!>, for the Explode! column.

Neuralyst also expects that the columns of a worksheet individually
represent different facts, goals, or predictions for each instance of a
problem. In this worksheet the first column, column A, is descriptive
and identifies each instance. The next three columns, C, D, and E
(blank columns are OK), represent facts that describe this particular

4.2 Configuring the Neural Network 27



instance. The next column, G, also represents a fact, whether or not
the mixture exploded, but in this case it also represents the known
result. The next column, I, will be used by Neuralyst to present its
outputs or predictions. The final column, K, is used primarily to
distinguish between those instances with known results to be used in
training the neural network and those instances which have been
saved as tests or those instances without known results for which a
prediction is desired. It also identifies those rows which are used for
special purposes.

Microsoft Excel - EXPLODE.XLS
=| File Edit View Insert Format Tools Data WWindow Neural

‘_|_|_|@|&|ﬂ|%|\|ﬂd_l|”lﬂllzlﬁslﬂl_lu_[

({1l Help
Init Working Area

[ Explosive Chemistry Set Rows...
A |B| c | D | E [F[ G Add Input Columns

1_|Explosiva Chemistry Add Target Columns
|2 [Copyright (C) 1994, Cheshire Engineering Corp Add Qutput Columns
| 3 | Set Mode Flag Column
41 inputs 7arget | get Mode Rows...
|5 |Aodure Fot Mirale | Charcoal Sulitr Explodes

3 Edit Column Lists...
L 7 [# 0z 0.4 04 FIZZLE | Select Data Mode...
| & [#2 0.4 0.4 0z FIZZLE | Edit Mode Lists...
L E 0.6 0.3 0.1 FIZZLE | Set Network Size...
10 [#4 0.7 0.1 0z BOOMI TRAIN
111 [#5 0.7 0.05 0.25 FIZZLE TRAIN
|12 |#6 0.75 0z 0.05 FIZZLE TRAIN
113 [#7 0.8 0.1 0.1 BOOMI TRAIN
| 14 [#8 04 0.05 0.05 FIZZLE TRAIN
|15 [#x1 0.7 0.3 0 FIZZLE TEST
|16 [#x2 0.75 0.1 015 BOOMI TEST
|17 [#43 0.95 0.025 0.025 FIZZLE TEST
|18 | FIZZLE BOOMI SYMBO
19 +
[ 4» ], EXPLODE =1 =

Initialize a new worksheet for Neuralyst

Figure 4-2 The Neuralyst Config Menu

The Config menu contains the interface to the commands that allow
you to define a problem. Figure 4-2 shows the commands available
from the menu.

The Config menu is organized in the same sequence as a problem
should generally be defined for Neuralyst. The first item is
Init Working Area. This will establish the area on the worksheet
thatis reserved for Neuralyst's parameters and data. This area should

28 4.2 Configuring the Neural Network



be the first cell that is to the right or below all the other data in the
worksheet. No other data should be entered in or beyond the defined
area as it may result in the incorrect operation of Neuralyst or it may
be deleted as a result of one of Neuralyst's internal actions. In this
example, move your cursor to cell M1, select it, pull the Config menu
down and select the Init Working Area command. Neuralyst will
ask you to confirm the initialization request; go ahead and click OK.
The cursor will now show as an hourglass {watch} for a moment as
Neuralyst initializes the Working Area. The results should appear as
in Figure 4-3.

Microsoft Excel - EXPLODE.XLS o
=| File Edit View Insert Format Tools Data Window Neural Config Help S
Ll=la] (Sla]v] (% [Fle] <)oo= ~] SR SB[ 8] [« [F]n]
_NwTL 3 | Meuralyst (TM) Yersion 1.4
K _[L] M N | o | p | @ | m | s | 1%
L1 | Meurahyst | Th) Version 1.4 m
| 2 | Copyright @ 1934 Cheshire Engineering Corp, Portions Copyright @ 1990-1994 EFIC Sy_
3
|4 | Metwork Fun Statistics
5 | & 0 RS Errar Raow Information Column |
| 6B | 0 Mumber of Data Items 0 First Fow #Input Cq
L7 | TRAIN 0 Mumber Right 0 Last Fow
8 | TRAIN 0 Mumberrang 0 Mumber of Rows Input Cal
19 | TRAIN 0% Percent Right 1 Rows/Fattern
110 | TRAIMN 0% Percentyrong 1 Row Offset
111 | TRAIN 0/ Training Epachs
112 | TRAIN
113 | TRAIN Metwork Parameters Enhanced Parameters
114 | TRAIN 1 Leaming rate Sigmoid Function
|15 | TEST 0.9 Mamentum 1 Function Gain
|16 | TEST 0/ Input Moise FALZE Force Zero
|17 | TEST 0.1 Training Talerance 0 Zero Threshold
18 | SvMBOL 0.3 Testing Tolerance FALSE Adaptive LR
19 | 1 Frnchs nerlndate Fivad Calrulstinn bathnd &2
W[« [wl EXPLODE I3 »
Ready [ MNom[ [ [

Figure 4-3 Portion of Neuralyst Working Area

Now the range of the input instances needs to be defined. This is the
purpose of the Set Rows command. Scroll the window to show
column A and select the cells A7 through A18. Now pull down the
Config menu and select the Set Rows command. This will tell
Neuralyst which rows it is to use as inputs to the neural network. The
column used for this purpose is not critical: it may or may not be one
of the Input columns to be defined next. A dialog box will appear after

4.2 Configuring the Neural Network 29



30

the selection has been accepted to let you set the number of rows per
pattern and the number of rows to offset between patterns. Leave both
at their default values of 1 for this example and confirm with OK.

The Input columns containing the facts for each instance are defined
through the Add Input Columns command. The columns to be set
as Input columns may either be selected one at a time or several
columns may be selected as an extended selection. To do this, point to
the column headings and select the three columns, C through E. Now
pull down the Config menu again and select the
Add Input Columns command. This will tell Neuralyst that these
columns contain the input facts. Each row of these columns, as
previously defined by Set Rows, being another instance to be
presented to the neural network.

The known result or consequence of these facts is defined for the
neural network through the Add Target Columns command. Select
column G and then select this command on the Config menu.
Similarly, the neural network’s output or prediction for these facts
after processing is defined through the Add Output Columns
command. Select column I and then select this command on the
Config menu. Multiple columns may be set as Target columns or
Output columns, but this feature is not necessary for this example.

The final column to be defined is the Mode Flag column. When
presenting a problem to Neuralyst, there needs to be some way to
distinguish between those facts which are to be used for training
purposes and either those facts which have known results but which
are reserved to test the success of the training or those facts for which
no results are known and for which the neural network prediction is
desired. The Mode Flag column makes that distinction. Rows that
have this column set to TRAIN will be treated as training sets. Rows
that have this column set to TEST will be treated as “testing” sets. In
the cases where the Target column values are defined (results are
known), then these may be considered test rows. In the cases where
the Target column values are not defined (results are not known), then
these may be considered as facts requiring neural network prediction.
To define the Mode Flag column, select column K and select the
command Set Mode Flag Column from the Config menu.

4.2 Configuring the Neural Network



The Mode Flag column is also used to indicate a number of special
rows that are useful to modify the behavior of Neuralyst. There are
three additional rows or row types that can be designated, these are:
SYMBOL, MIN, and MAX. A row designated by sYyMBoOL is interpreted by
Neuralyst to contain definitions of symbols for Input or Target
columns. A row designated by MIN is interpreted by Neuralyst to
contain definitions of the minimum range limit for Input, Target, or
Output, columns. A row designated by MAX is interpreted by
Neuralyst to contain definitions of the maximum range limit for Input
or Target columns. If MIN or MAX rows are set, the limits entered for
each target column are applied to the corresponding Output column.
To enter row 18 as a SYMBOL row, select row 18 and select the
command Set Mode Rows from the Config menu. When the dialog
box appears, select the Set Symbol Row option and confirm OK.

The Edit Column Lists command allows you to view the column
labels entered under each column type and to change them if desired.
Select Edit Column Lists from the Config menu to see what this
looks like. You can try making some changes, but be sure to restore
the labels to their original values and confirm OK when you are done.

The Select Data Mode command allows you to classify the data for
your problem between a training set and a testing set. This is done
through a number of options which will set the Mode Flag column as
TRAIN or TEST for you to indicate training or testing.

The Edit Mode Lists command allows you to view the settings of
SYMBOL, MIN, and MAX fields for each designated column and to
change them if desired. Select column G and then select
Edit Mode Lists from the Config menu to see what this looks like.
You can try making some changes, but be sure to restore the labels to
their original values and confirm OK when you are done.

Once the problem data has been defined, the neural network structure
needs to be defined. To do this, select the Set Network Size
command from the Config menu. A dialog box will appear requesting
you to input the number of layers for the neural network. The default
is 2, but in this instance you should enter 3 and then confirm OK.
Another dialog box will now appear. This dialog box shows the input
and output layers with a fixed number of neurons determined by the
number of Input Columns and Target columns specified. In this case

4.2 Configuring the Neural Network 31



the input layer is layer 1 which has three neurons and the output layer
is layer 3 which has one neuron. There is an additional layer, layer 2,
which starts with a default of one neuron. Change this to 3 and
confirm OK. The hourglass {watch} cursor will appear for a moment
as Neuralyst builds the neural network, then Neuralyst will display
the Network Weights, as they have been initialized in the
Working Area.

This completes the configuration process, but before you proceed to
running Neuralyst, you should take a moment to step back and review
the worksheet as it appears now. This will give you a general sense of
how a Neuralyst worksheet is organized. First there is a Descriptive
Area, which is usually located above or to the left of the Problem
Definition Area. This includes column titles, information about the
worksheet and other descriptive text. Then there is the Problem
Definition Area, within which there will be a set of Input columns
which represent facts to be presented, a set of Target or goal columns
which represent known results, a set of Output columns for the neural
network to present its outputs or predictions and a Mode Flag column
which allows you to specify training instances, testing or prediction
instances, and special definition rows used by Neuralyst. Finally,
there is a Neuralyst Working Area which Neuralyst uses for its
operational purposes. The Working Area will usually be the rightmost
or bottommost part of the worksheet.

4.3 Running the Neural Network

32

The Neural menu provides the commands that allows you to control
the operation of the neural network.

The first command in the menu, Reload Network, allows a saved
Neuralyst worksheet to be reloaded. The next three, Train Network,
Run/Predict with Network, and Run Genetic Supervisor,
determine the operating mode of the neural network. The next,
Set Network Parameters, allows you to set parameters
which control the operation of the neural network.
Set Enhanced Parameters allows you to enhance the behavior of
the neural network from the standard backpropagation neural

4.3 Running the Neural Network



= 050 P PLOD |~
=| File Edit ¥Yiew Insert Format Tools Data Window A0 Config Help =
mEEE R EE Y E E R I (A T 220 Tetwo
e |_i.| | Train Network “t
A | B | C | D | E | F | Bun{Predict with Network r
| 1_|[Explosive Chemistry Run Genetic Supervisor... “g
|2 |Copyright {C) 1994, Cheshire Engineering Corp Set Network Parameters...  *p
| 3 | Set Enhanced Parameters...
= - Inpuis - Set Genetic Parameters...
| & | Modure Fot Mirate | Charcoal Sullar A
B Plot Training Error
7 |l 0.z 0.4 0.4 Reset Weights...
8 |#2 0.4 0.4 0.z Histogram Weights
L9 [#3 0.6 0.3 0.1 Unpack Weights
110 [#4 0.7 01 0.2 BOOMI TRAIN
|11 [#5 0.7 0.05 0.25 FIZZLE TRAIN
|12 [#6 0,75 0.z 0.05 FIZZLE TRAIN
|13 |#7 0.8 01 0.1 BOORI TRAIN
|14 |#8 0.9 0.05 0.05 FIZZLE TRAIN
|15 |#x1 0.7 03 0 FIZZLE TEST
|16 |#x2 0,78 01 01§ BOORI TEST
|17 |#%3 0.95 0.025 0.025 FIZZLE TEST
1 FIZZLE,BOOMI SYMBO
19 | +
<[ 4[> [»]: EXPLODE =l =
Loads data from an already-initialized worksheet

Figure 4-4 The Neuralyst Neural Menu

network described in Chapter 3. Set Genetic Parameters allows
you to set parameters which control the Genetic training supervisor
which can be used to optimize the definition and configuration of the
neural network. The Plot Training Error command allows you to
view the progress of training. The next three, Reset Weights,
Histogram Weights, and Unpack Weights, allow you to set and
view the neural network weights, providing access to the
representations of learning the neural network has undergone.

[If you have installed the Trader’'s Macro Library or other
supplementary libraries, they will appear as additional commands at
the end of the Neural menu.]

For now, we can start by setting a parameter and then proceed to train
the network. Select the Set Network Parameters command from
the Neural menu. A dialog box will appear showing several
parameters, Learning Rate, @ Momentum, Input Noise,
Training Tolerance, Testing Tolerance, Epochs per Update,

4.3 Running the Neural Network 33



34

Epoch Limit, Time Limit, and Error Limit. Each of these will
have a default value.

Learning Rate determines the magnitude of the correction term
applied to adjust each neuron’s weights when training. Learning Rate
must be positive, is adjusted in the range of 0 to 1 and has a default
value of 1. Large values of Learning Rate will cause the network to
train more quickly, but too large a value may cause the training to be
unstable and no learning will occur.

Momentum determines the “lifetime” of a correction term as the
training process takes place. Momentum must be greater than or
equal to 0 but less than 1 and has a default of 0.9. Values of Momentum
closer to 1 will cause the neural network to retain more of the impact
of previous corrections to the current corrections. Values of
Momentum close to 0 will allow mostly or only the current corrective
term to have an effect. Momentum helps to smooth out the training
process so that no single aberrant instance can force learning in an
undesirable direction.

Input Noise provides a slight random variation to each input value
for every training epoch. As training occurs, this has the effect of
preventing the neural network from learning the exact input values.
Ideally, this will prevent overtraining and improve the generalization
process. Input Noise has a range of 0 to 1, but small values of
Input Noise are generally the most useful. Input Noise represents a
percentage of the range for an input, for example a value of 0.1, or
10%, means that a noise level of up to 10% of the input range will be
applied. Input Noise is set to 0 as a default.

Training Tolerance defines the percentage error allowed in comparing
the neural network output to the target value to be scored as “Right”
during the training process. The Training Tolerance should be
between 0 and 1 and has 0.1, or 10%, as a default. The
Training Tolerance value has no effect on the learning algorithm.
However, when Neuralyst finds 100% Right, as defined by
Training Tolerance, it will automatically stop training.

Testing Tolerance is similar to Training Tolerance, but it is applied
to the neural network outputs and the target values only for the test
data (as defined by the value of the Mode Flag column). Neural
network output and test target values are scored as “Right” if they are

4.3 Running the Neural Network



within the Testing Tolerance. Otherwise they are scored as “Wrong”.
The Testing Tolerance should be between 0 and 1 and has 0.3, or 30%,
as a default. Testing Tolerance may be set to the same limit as
Training Tolerance, but is often set to a less restrictive value since
prediction is usually less exact than training.

Epochs per Update allows you to control the number of epochs
between updates of the neural network results which are displayed
in the Network Run Statistics block in the worksheet. An epoch is one
complete processing run through all defined training cases.
Epochs per Update has a default value of 1. However larger values
will mean less frequent communication between the neural network
and the worksheet, reducing overall training time.

Epoch Limit sets a maximum number of training epochs the neural
network will undergo in those situations where you wish to control
the number of training epochs rather than setting a
Training Tolerance. Epoch Limit has a default value of 0, which
means that there is no limit set.

Time Limit sets a maximum amount of time that the training of the
neural network will undergo. This is useful if Neuralyst may be left
unattended during the training process. Time Limit has a default
value of 0, which means that no limit is set.

Error Limit sets a limit for an increase in the training error. Generally
a neural network will steadily reduce the training error. If too much
training occurs or if the neural network has insufficient capacity or
an inappropriate configuration for the problem, then it is possible for
the training error to increase. Error Limit allows these conditions to
terminate training. Error Limit has a default value of 0, which means
that no limit is set.

When one or more limits are set, the first limit that occurs, or if no
limit occurs, the achievement of training within the
Training Tolerance will terminate training.

Only Epochs per Update should be changed in this example. Enter 50,
indicating 50 epochs between worksheet updates, for
Epochs per Update. Confirm OK.

4.3 Running the Neural Network 35



36

Finally, select the Train Network command from the Neural menu.
If the configuration steps have been followed properly, the window
will shift so that the Network Run Statistics block is visible and the
first cell in that block, RMS Error, will be changing quickly. As
training progresses, the RMS Error will be decreasing and the scores
in Right and Percent Right will be increasing.

While the neural network is training, you can cause training to pause
by typing the Esc {Esc or cmd-.} key. Try it. When the Esc {Esc or
cmd-.} key is typed, Neuralyst will stop at the next update point and
save its current work and after a moment allow you to access the
worksheet. Training can be resumed by selecting the Train Network
command from the Neural menu again. Do that now. After a few
minutes (depending on the speed of your computer), the Right and
Percent Right scores will be 8 and 100%, respectively. The neural
network will have been trained.

When Neuralyst concludes training the neural network, it will place
the current values of the neural network output in the Output
column, 1. The values in this column should match those in column G,
the targets used to train the neural network. When the Target column
is symbolic, then the Output column is filled with symbols that
correspond most closely to the actual numeric values that are
processed by the neural network. When the Target column is numeric,
then the Output column is filled with the actual numeric values. In
the numeric case, the effect of Training Tolerance is more visible as
the variation from the target values can be calculated.

With the neural network trained, Neuralyst is now ready to run the
neural network to predict the outcomes of experiments X1 through
X3. The “known” results (based on a fictitious formula that models the
behavior of all the experiments in the EXPLODE.XLS {Explode} world)
have been entered in the last three lines of the Explode! column, but
when Neuralyst runs the neural network in predictive mode it will
not look at these in making its prediction. These results will only be
used in scoring the success of the neural network.

To test the neural network, select Run/Predict with Network from
the Neural menu. The results of the run will be placed in the last
three rows of the Explode? column, corresponding to X1 through X3,
and the scoring will now be updated to reflect the results of this test

4.3 Running the Neural Network



run rather than the previous training runs. The Right and
Percent Right scores will be 3 and 100%, reflecting the testing of these
three additional experiments and the comparison of the test outputs
against the known values.

Microsoft Excel - EXPLODE.XLS o
=| File Edit View Insert Format Tools Data Window Neural Config Help *
=2 (=T e e e 0 e P PN ] | R e e
G7 | | FIZZLE
D [ E [F] & [H] 1 JJ] K JL] M | N ] [+
1] Meuralyst (TM) Version |||
|_2 hire Engineering Corp Copyright® 1334 Chesh
3
14 | Farget uiput Metwork Fun Statistics
| 5 | Lharcoal Sullur Explode!  Explode? M 0.037348 RMS Error
] 3 Mumberaf D
7 | 04 04 FIZZLE TRAIN 3 Mumber Rig
| 8 | 0.4 0.2 FIZZLE TRAIN 0/ Mumber Wroj
|9 | 0.3 0.1 FIZZLE TRAIN 100%: Percent Rig
|10 | 0.1 0.2 BOOKI TRAIN 0% Percent'Wro
111 | 0.05 0.25 FIZZLE TRAIN 1800 Training Epo
112 | 0.2 0.05 FIZZLE TRAIN
113 | 01 01 BOOKI TRAIN Metwiark Parameters
114 | 0.05 0.05 FIZZLE TRAIN 1/ Learning ratg
|15 | 0.3 ] FIZZLE TEST 0.9 Mamentum
|16 | 0.1 0.15 BOORI TEST 0/Input Moise
117 | 0.025 0.025 Il | FIZZLE TEST 0.1 Training Talg
118 | FIZZLE BOOMI SYMBOL 0.3/ Testing Tole
19 50 Epochs per U
4] «[»I»: EXPLODE =l 11 =
Ready [T mNom[ [ [

Figure 4-5 Final Screen for EXPLODE.XLS {Explode}

4.4 Finishing Up

That's it! We've just configured and run a neural network, had it learn
some of the rules of chemistry of the EXPLODE. XLS {ExpT1ode} world, and
been able to use it to predict the outcome of additional experiments
that the neural network had not seen before!

To save this work, this Neuralyst worksheet can be saved like any
other Excel worksheet: from the File menu choose the Save or
Save As command. The Exit{Quit} command (also in the File menu)
can be used to exit; Neuralyst will unload along with Excel.

4.4 Finishing Up 37



38 4.4 Finishing Up



Chapter 5
Learning More About Neuralyst

Neural networks are really very simple in concept. However, like their
biological counterparts, this simplicity is the foundation for highly
complex behavior and sophisticated capabilities.

In chapter 4 the basic capabilities and operation of Neuralyst were
discussed. This chapter focuses on several additional facets of
Neuralyst and neural network behavior. The examples in this chapter
illustrate these points as well as demonstrating a broad, though by
no means complete, range of possible applications. At the start of each
section, load the example indicated and explore it while reading the
discussion. But don’t stop there, experiment and see what happens!

The first six examples are based on idealized scenarios (much like
EXPLODE.XLS {Explode}) with fairly simple rules of behavior. This has
been done to allow the principles of behavior of neural networks to be
demonstrated with fairly small data sets. In general, real data sets
will be “noisier”. That is, they will not have values that conform
perfectly to a hidden model; instead the values will tend to vary
around some “true” value with such variations being small to large
depending on the circumstances. In order for neural networks to
perceive the structure that may exist underlying such variations,
more data must generally be presented and more time be spent in
training.

In the next two examples, we will depart from the idealized situations
and move on to real world data. Both of these will deal with
investment analysis. The first is based on fundamental analysis, that
is the forecasting of a stock or commodity’s future price movements
from data relating to a company’s revenues, earnings, debt, equity,

39



rates of returns, dividends, and so on. The second is based on technical
analysis, that is the prediction of a stock or commodity’s future price
movements from past price movements. Fundamental analysis is
generally considered a long-term approach, with forecasts ranging
from many months to a few years. Technical analysis is generally
considered a short-term approach, with predictions ranging from a
few minutes to many weeks.

Finally, the last example provides a demonstration of Neuralyst's
two-dimensional analysis and pattern matching capabilities through
the recognition of patterns and shapes. Neuralyst’'s multi-dimensional
analysis capabilities can be applied to a variety of applications,
including: image processing, character recognition, and so on.

At the conclusion of the discussion and examples, you will have amuch
better understanding of the capabilities and limitations of neural
networks and how to go about preparing a problem for Neuralyst to
analyze.

5.1 Parity Generator — PARITY.XLS {Parity}

40

PARITY.XLS {Parity} contains a slightly more sophisticated example of
a computer logic operation than shown in the first Neuralyst example,
LOGIC.XLS {Logic}. Like that example, PARITY.XLS {Parity} works with
the binary representation, 0's and 1's, of computer data and is a key
function in computer operations.

PARITY.XLS {Parity} demonstrates the operation of parity generation
for computer data. You may be aware that many computers, including
PC's and Macintosh'’s, use the parity check operation to verify data in
computer memory (you may have seen the message “PARITY CHECK”
followed by a hung computer when the check fails on a PC).

Remember that computer data is stored in groups of eight bits, known
as a byte. For each byte, the computer’s parity circuits count the
number of 1's present in the byte. If the count is odd, then there is odd
parity; if the count is even, then there is even parity. When the byte
is written, the parity is saved in a ninth bit, known as the parity bit.
When the byte is read, the parity of the byte is checked against the

5.1 Parity Generator — PARITY.XLS {Parity}



previously saved parity bit. If there has been no change while the data
resided in memory, then the parity as read will be the same as the
parity when written. If there is a difference, then one of the bits must
have changed (a 0 changing to 1 or a 1 changing to 0 will change the
number of 1's and thereby disturb the parity) and the data has been
corrupted. When this occurs, the computer stops since it is safer to
stop operations than to try and continue with bad data that may result
in additional problems.

In the PARITY.XLS {Parity} example, there are only four bits
(sometimes known as a nibble) of input, rather than the eight bits
present in a full byte. These four bits can represent any number from
0 to 15 and those are the values listed in the example. (If all eight bits
had been used, the example would range from O to 255 — too many
data lines for a simple demonstration.)

There are two Target columns, indicating the parity of the nibble, even
or odd (zero 1's being counted as even). There are also two Output
columns reserved for the neural network results. To run this example:

1. Init Working Area — starting at N1

2. Set Rows — 6 through 21, 1 Row/Pattern, 1 Row/Shift
3. Add Input Columns — C, D, E,and F

4. Add Target Columns — H and |

5. Add Output Columns — K and L

6. Set Network Size — 3 Layers, 8 Hidden Neurons

7. Set Network Parameters — Training Tolerance to 0.2,
Epochs per Update to 20

[If the steps described in this “short” form are not clear to you, please
review Chapter 4, which goes through the entire process of configuring
a network in great detail.]

With this configuration, you can start training. While this problem is
training, pay particular attention to the RMS Error value. Normally,
successful training is indicated by a steady decrease in the RMS Error
value. If nothing seems to be happening after a while, try stopping the
training and use the Plot Training Error command to look at the

5.1 Parity Generator — PARITY.XLS {Parity} 41



42

training progress. Resume training and look again after a while. You
may notice that there sometimes periods when the error value doesn't
seem to make much progress (it may even lose ground for a bit) and
then there are other periods when the error value is reduced at a
steady rate or even jumps downward. After some time Neuralyst will
stop and the Output columns will match the Target columns;
Neuralyst has learned to generate the parity of any four bit value!

As it turns out, the data in this problem has a characteristic that is
particularly hard for neural networks. That is, very similar inputs
lead to very different outputs. For every value in this example, there
is another value that is different in only one input bit, yet has the
opposite output value! Despite this, the neural network was able to
learn the data. Still, this kind of characteristic in the input data can
lead to some long training sessions if the problem data, training
parameters, or network size are poorly set.

Evenworse than data that is structured like this is contradictory data.
That is data that has two or more input sets that match while they
have very different outputs; for example, having the binary
representation of 2 be even parity and later on having another
instance where the binary representation of 2 is now odd parity. Such
contradictions must be removed as the neural network generally
cannot resolve these unless the error tolerance is set so loosely that
the outputs are often useless.

Now, let’s go back to the behavior we mentioned. Those periods, when
error reduction seemed to make little progress, are known as
learning plateaus. When this phenomenon occurs, it is generally
believed that the neural network is undergoing a generalization
process and developing internal representations of relevant
characteristics of the data. In fact when these plateaus occur, the
neural network is probably learning the most, even though the error
value is changing the least!

Conversely, when the error value is making rapid progress in
reduction, this generally means that the neurons have already sorted
themselves out and the corrections are being applied with maximum
effect to each neuron.

Sometimes it takes multiple plateaus, wherein new or additional
distinctions or generalizations are made each time, followed by

5.1 Parity Generator — PARITY.XLS {Parity}



another phase of rapid error reduction, before the neural network is
able to complete its learning.

Watch for this kind of behavior. This will help you in understanding
what is happening with the neural network and may give an
indication of whether the network has been properly sized for the
problem.

To see what happens with marginally sized networks, rerun the
problem by giving the Set Network Size command again. This time,
set 3 layers and 4 hidden neurons. (You will be warned that this will
cause any learning done so far to be forgotten; click on OK.) Then start
training. What happens? Repeat this a few times. You will find that
sometimes the neural network trains properly and other times it
seems to reach a permanent plateau at some point, with Neuralyst
continuing to run since it is not able to achieve the required error
tolerance. There exists a solution for 4 neurons, but the neural
network is not always able to find the solution!

The neural network training process can be thought of as an
exploration of the weight space, all the different possible combinations
of weight values, until a weight set is found that produces the desired
targets. For this particular problem, with this particular neural
network configuration, there exists local minima in the weight space.
These are points in the weight space that “trap” the neural network;
the backpropagation algorithm not being able to move out of that
region to find the correct weight set. When local minima exist, one
solution is to try increasing the number of neurons until the neural
network is able to train consistently.

Another experiment to try is to change one or more lines of data so
that contradictory cases are presented. (Anytime you change input or
target data values, you must give the Reload Network command so
that Neuralyst is aware that there have been changes and that it must
pick them up.) Also, try different settings of the Training Parameters
and Network Size on this problem, with and without contradictory
data. Observe the learning behavior in each case.

5.1 Parity Generator — PARITY.XLS {Parity} 43



Important Points:

Neural networks have a difficult time learning when inputs
having small distinctions between them require outputs with
large distinctions between them.

Neural networks cannot learn properly from contradictory data.

Neural networks often experience learning plateaus; these are
probably phases of neural network development during which
distinctions and generalizations are made.

Neural networks must have sufficient network capacity (size) to
learn.

5.2 Paper-Rock-Scissors Game — PAPER.XLS {Paper Game}

44

PAPER.XLS {Paper Game} contains an example that is actually
structurally very similar to PARITY.XLS {Parity}. Like that example,
PAPER.XLS {Paper Game} works with the representations
<PAPER, ROCK, SCISSORS> and <BONNIE, TIE, CHRIS> of possible input
values and outcomes. As with PARITY.XLS {Parity}, the goal is to learn
the rules of the game, and the rules define distinct and sometimes
opposite outcomes for various changes in inputs.

Note that <PAPER, ROCK, SCISSORS> and <BONNIE, TIE, CHRIS> are
ternary, that is three-valued, inputs and outputs. This example
demonstrates two things, the symbolic capabilities of Neuralyst and
the additional multi-valued capabilities of Neuralyst.

There are two Input columns that are set to the three possible choices
of the two players Bonnie and Chris, that is Paper, Rock, or Scissors.
There is a Target columns indicating who wins, or if it was a tie. There
are also a matching Output columns reserved for the neural network
results. To run this example:

1. Init Working Area — starting at J1
2. Set Rows — 6 through 15, 1 Row/Pattern, 1 Row/Shift
3. Add Input Columns — A, and B

5.2 Paper-Rock-Scissors Game — PAPER.XLS {Paper Game}



4. Add Target Columns — D

5. Add Output Columns — F

6. Set Mode Flag Column —H

7. Set Mode Rows — 15 Set Symbol Row

8. Set Network Size — 3 Layers, 8 Hidden Neurons

9. Set Network Parameters — Training Tolerance to 0.2,
Epochs per Update to 20

With this configuration, you can start training. After some time
Neuralyst will stop and the Output column will match the Target
column; Neuralyst has learned the rules of the Paper-Rock-Scissors
game!

The comments and discussion for the PARITY.XLS {Parity}example are
also relevant here and you can make many of the same experiments
to learn more about how neural networks behave with different kinds
of data.

Important Points:

Using symbolic representations provides a more natural way to
express certain types of problems.

Neural networks can deal with a variety of multi-valued inputs
and outputs.

5.3 Sine Wave — SINE.XLS {Sine}

SINE.XLS {Sine} contains an example of how Neuralyst can match and
predict values for a complex mathematical function with just a few
data points. In contrast to the computer logic operation that was
shown in the PARITY.XLS {Parity} example, SINE.XLS {Sine} uses
continuous real numbers rather than the binary representation, 0's
and 1's, of computer data.

SINE.XLS {Sine} demonstrates the operation of interpolation on
mathematical data. Many complex operations can be approximated

5.3 Sine Wave — SINE.XLS {Sine} 45



46

by a mathematical function; for a given input value, there is a
corresponding output value. For real world behavior, it is common to
have a few sampled or measured values of the function, but not a
complete description or every value of the function. From just a few
samples, Neuralyst can often interpolate the values of the function
that were not previously known.

The sine function is a familiar mathematical function from
high-school trigonometry. It is an important function because it is
used in every area of science and engineering. It is an interesting
function because it is known as a transcendental function.
Transcendental functions are harder to describe or generate than
most functions that are familiar from high-school algebra. In
particular, the values of the sine function are normally derived by
computing an infinite series of terms. The input to a sine function is
any real value, though in the example training is limited to O to 6.28,
or 2r, and the output is any real value from -1 to 1.

In the SINE.XLS {Sine} example, there is only one Input and one Target
column. There is also a corresponding Output column to match the
Target column. To run this example:

1. Init Working Area — starting at L1

. Set Rows — 5 through 140, 1 Row/Pattern, 1 Row/Shift
. Add Input Columns — A

. Add Target Columns — B

. Add Output Columns — C

. Set Mode Flag Column — D

. Set Network Size — 3 Layers, 3 Hidden Neurons

0o N o o M~ wWwDN

. Set Network Parameters — Momentum to O,
Training Tolerance to 0.04,
Epochs per Update to 50

With this configuration, you can start training. After a few minutes
Neuralyst will be done training. In the example, some well-spaced

5.3 Sine Wave — SINE.XLS {Sine}



samples for a single cycle of a sine wave are selected and used for
training. The remaining points are used for testing and plotted
against an exact sine wave for comparison. After training is complete
do a Run/Predict to fill in the previously unknown points. Look at the
resulting comparison chart. Neuralyst has generalized the shape of a
sine wave from just a few sample points!

The interpolation is off by only a few percent at the worst points and
at many points is almost exact. The function can be made more exact
with more training time, more neurons or more data points used for
training. More training time allows the neural network more time to
adjust its weights to a better solution. More neurons allows the neural
network more capacity to develop a model of the sine wave. More data
points gives the neural network more information to constrain the
approximation of the sine wave at those points that are changing
rapidly and are far away from an input training case. Try
experimenting with which of the three variations is most successful
in generating a more exact interpolation. Also observe that there is a
limit to how exact the neural network can be.

In addition to the above experiments, Neuralyst allows you to control
two parameters, Calculation Method and Scaling Margin in the
Set Enhanced Parameters dialog box, which can also affect speed
of training, precision and accuracy. Try training with
Calculation Method set to Floating Point versus the default
Fixed Point method. Also try adjusting the Scaling Margin from 10%
to 50%. While adjusting those two parameters, try tightening
Training Tolerance to 0.03, 0.02 ore even 0.01 (that is, 3%, 2% or
even 1%).

Important Points:

Neural networks can approximate and interpolate continuously
valued functions with relatively few training points.

Despite the capabilities available with relatively few training
cases, more training cases will generally provide better training.

The choice of Calculation Method can affect the training of certain
types of problems.

5.3 Sine Wave — SINE.XLS {Sine} 47



The setting of Scaling Margin can also affect the training of
certain types of problems.

5.4 Criminal Mugbook — MUGBOOK.XLS {Mug Book}

48

So far there have been three examples, LOGIC.XLS {Logic},
PARITY.XLS {Parity} and PAPER.XLS {Paper Game}, which have
demonstrated a neural network’s capabilities to learn and reproduce
rules from examples of those rules and two examples,
EXPLODE.XLS {EXPLODE} and SINE.XLS {SINE} which have demonstrated
a neural network’s capabilities to generalize and predict from known
facts. MUGBOOK.XLS {Mug Book} will demonstrate an example of how
neural networks can also be used for pattern matching or as an
associative memory.

You are probably familiar with the concept of a mugbook, a book of
photos used by the police to help witnesses match the physical
characteristics of known criminals against the features of a suspect
the witness has seen. In some cases, there are problems in the
identification process since the witness is not completely sure of the
match due to the uncertainty of their memory, poor visibility at the
time of the crime or changes in outward characteristics, for example,
weight gain, shorter hair length or deliberate disguise.

MUGBOOK.XLS {Mug Book} is a simplified example of a mugbook, based
on four physical characteristics: sex, age, coloring, and weight of eight
known criminals in Midtown, U.S.A.. Most of these characteristics
have been converted to a symbolic value, using the translation shown
under each column of the worksheet. For example, age has been
broken into decades, coloring has been segmented into three
groupings: light, medium, and dark, and so on. Each of the eight
criminals has also been assigned an ID number from 1 to 8.

The Target and Output columns are set up as eight separate
indicators, each one representing a different ID. A 1 under an ID
indicates that the criminal with that ID is completely identified, a 0
under an ID indicates that criminal is completely rejected. For a solid
ID, all indicators should be 0 except for one that contains 1. There are

5.4 Criminal Mugbook — MUGBOOK.XLS {Mug Book}



two reasons why the outputs have been organized in this fashion. Let's
discuss these for a moment.

First, while neural networks can make fine distinctions, there is a
limit to the number of distinctions, that is different output values,
that a single neuron can meaningfully take on. This can result in
self-deception if you are not careful. You can train the neural network
to produce the actual output values to match the target values (within
the Training Tolerance), no matter how fine the distinction, and so
believe that the neural network has made these distinctions. But
when the neural network is run, these distinctions will not be
successfully reproduced.

There is no hard rule as to how many distinctions can be made
successfully by an output, but numbers beyond 4 to 8 are generally
difficult. In this case, with 8 ID’s to match, we have established a
separate output neuron for each ID.

The second reason anticipates the conclusion of the demonstration to
a certain extent. Once the network has been trained on the known
criminals, we will present the characteristics of an unknown to try
and match against the known ones. The use of separate outputs for
each ID allows the neural network to use the full output range to
indicate the quality of the match for the known characteristics of each
ID against the characteristics of the unknown person.

To clarify this some more, if an unknown had some of the
characteristics of ID 3 and some of the characteristics of ID 5, the only
way a single output could express this would be by presenting 4. You
would have no way of distinguishing this output from an actual match
with ID 4 or partial matches between two or more ID’s that
averaged 4. With separate outputs, the outputs for ID 3and ID 5 could
each present a fractional value, indicating a partial match, without
any confusion.

To run this example:
1. Init Working Area — starting at AC1
2. Set Rows — 9 through 18, 1 Row/Pattern, 1 Row/Shift
3. Add Input Columns — D, E, F,and G

5.4 Criminal Mugbook — MUGBOOK .XLS {Mug Book} 49



50

4. Add Target Columns — I through P

5. Add Output Columns — R through Y

6. Set Mode Flag Column — AA

7. Set Mode Rows — 18, Set Symbol Row

8. Set Network Size — 3 Layers, 6 Hidden Neurons

9. Set Network Parameters — Training Tolerance to 0.2,
Epochs per Update to 20

With this configuration, you can start training. After a short time
Neuralyst will be done. Neuralyst has learned the distinguishing
characteristics of the eight known criminals! Any suspect with exactly
the same characteristics as one of these known criminals will
immediately produce a match. This capability is similar to the rule
reproduction capability already demonstrated before.

However, this is somewhat more powerful than may be obvious from
this simplified example. The reason is that this capability can be
extended to hundreds of characteristics and thousands of criminals
(or any other search objects). This is the same function performed by
conventional computer databases. However, computer designers
know that searching and matching in large databases are among the
most time consuming database operations. On the other hand, a
neural network trained to the same data as a large database could
“retrieve” a match with just one processing operation!

A more sophisticated capability than this will soon be apparent. Select
Run/Predict with Network from the Neural menu to run the
network. The characteristics of Mr. X are processed and the eight
outputs in that row now have fractional values in them. These
fractional values represent the neural network’s assessment of how
closely Mr. X matches characteristics of the known criminals. The
neural network is able to generate indications for the closest matches
even though it didn't find an exact match!

The strongest outputs are likely to be for ID 5 and ID 7, with other
outputs perhaps showing a response. While there is some information
in the relative values of the matches, these values should not be taken

5.4 Criminal Mugbook — MUGBOOK.XLS {Mug Book}



at first inspection as exact measures of closeness or probability. There
are three reasons for this.

First, remember that the Training Tolerance was set to 0.2 or 20% of
the output range, thus we can't expect predictions to 5% when we
trained to tolerances of 20%. However, there is a danger to training
too strictly. It is possible that a neural network tries so hard to match
the exact values in training that it loses its generalizations. This is
called overtraining. This is particularly likely to occur when there are
too many hidden layer neurons, too few training samples and too
much training time. In this case, what happens is that the neural
network has so much capacity in relation to the data it must learn,
that it can afford to match the outputs rather than to generalize. In
essence, it is easier for the neural network to build an internal “crib
sheet” rather than understand the structure of the data!

Second, we don't know exactly what characteristics the neural
network has determined are relevant (this is particularly important
with small sample sets, as in these examples, where there will be
fewer or no samples to contradict bad generalizations) and there is
often no way to find out without experimenting with the neural
network. Theoretically it should be possible to understand the model
developed by the neural network through a detailed examination and
understanding of the weights, but in practice these values and
relationships are often too complex for this to be attempted.

Third, for complex systems, the weights that a neural network uses
to begin training (which are randomly assigned with each new
configuration) can determine which one of a few (or many) possible
solutions is actually found. This is why rerunning some of these
problems with a new set of weights may result in slightly different
solutions. The fact that the results are sometimes slightly different
doesn’'t mean that the neural net is giving incorrect answers. Instead,
it means that the data presented to the neural network admits of more
than one solution.

Having considered these limitations, in the context of this example
and with our current understanding of this neural network’s behavior,
it is best to say that the neural network considers ID 5 and ID 7 to be
strong candidates, while the other ID’s with weaker outputs are
weaker candidates, without placing too much emphasis on exactly

5.4 Criminal Mugbook — MUGBOOK .XLS {Mug Book} 51



how much stronger or weaker these candidates are with respect to
each other.

However, you can experiment with this neural network’s behavior.
When you have learned enough, perhaps you could say more. Try
decreasing the Training Tolerance by steps of 0.05 from 0.4 to 0.1,
training on the known criminals and running on the unknown after
each change. You may want to try using the User Set Randomization
option with Reset Weights for these experiments in order to start
from a standard set of initial weight values (see Section 8.2.9). What
happens to the values of the outputs? Try increasing the number of
hidden layer neurons in the neural network and retraining. What
happens when the unknown is matched now? Try adding more
criminals with characteristics spaced evenly from each other and
those already in the training set. Does the neural network do a better
job of finding matches?

Important Points:

Neural network outputs should not be designed to make many
fine distinctions.

Several separated neural network outputs can convey more
information than a few combined outputs.

Setting the Training Tolerance more tightly than is necessary
may interfere with generalization within the neural network.

Too much network capacity (size) and excessive training time
may let the neural network “crib” rather than learn.

Neural networks require comprehensive, well-sampled training
data in order to develop good generalizations

5.5 Credit Rater — EZCREDIT.XLS {EZ Credit}

52

EZCREDIT.XLS {EZ Credit} provides another demonstration of neural
network pattern matching. EZCREDIT.XLS {EZ Credit} is similar in
concept and structure to MUGBOOK.XLS {Mug Book}, but it provides an
example of how the input types may also be categorized by indicators

5.5 Credit Rater — EZCREDIT.XLS {EZ Credit}



using binary values, in a similar fashion to the outputs in
MUGBOOK.XLS {Mug Book}.

In this demonstration the Credit Approval Manager for EasyCredit
Corporation has set up a database containing individuals
distinguished by four characteristics: Income, Credit Experience,
current Debt Burden, and prior Bankruptcy status. These
characteristics are then matched to the actual credit history of the
individuals EasyCredit has compiled from working records.
EasyCredit expects that once the neural network is taught on its
database of current clients, it will be able to use the neural network
to rate new applicants.

Since the information contained in the credit records is varied, some
numerical, some categorical, and some yes/no types, the manager has
chosen to break each input type into one or more classifications or
subdivisions that she feels are meaningful without being too fine. For
each input type, the valid classification will be indicated by a 1, while
the other classifications will be indicated by a 0. For example, for
Income, she has chosen three classes: 0-30, 30-60, and 60+. She knows
that these income ranges tend to define breaks where people have
moderate, good, and excellent, ability to repay loans, respectively.

Itis also possible that more than one class may be valid. For example,
in the case of Credit Experience, she has identified the three most
meaningful classifications as those people who have no credit cards,
those with a department store credit card or those with a major bank
credit card. Since a person can have both store credit cards and bank
credit cards, a 1 could be entered for each subdivision, if appropriate.

Each of the four major credit characteristics have been classified in
this way and entered into the worksheet for 16 customers. For these
customers, the credit risk, represented by the payment history
actually experienced by the company, is listed as Low, Medium, or
High. A test case, Joe Applicant, is shown in the last row.

To run this example:
1. Init Working Area — starting at AAl
2. Set Rows — 8 through 24, 1 Row/Pattern, 1 Row/Shift

5.5 Credit Rater — EZCREDIT.XLS {EZ Credit} 53



54

3. Add Input Columns—C,D,E,G,H, |, K, L, M,and O
(Note the omission of columns F, J, and N! Perform this
operation as four separate Add Input Columns — C,D,E then
G,H,l then K,L,M then O.)

4. Add Target Columns — Q, R,and S

5. Add Output Columns — U, V, and W

6. Set Mode Flag Column —Y

7. Set Network Size — 3 Layers, 4 Hidden Neurons

8. Set Network Parameters — Training Tolerance to 0.2,
Testing Tolerance to 0.4,
Epochs per Update to 10

With this configuration, use the Train Network command to begin
training. Neuralyst will stop after a short time. At this point it has
taken the credit records of EasyCredit's past customers and
established from this database the characteristics that contribute to
credit rating and whether each characteristic does so positively or
negatively!

When it is done, use the Run/Predict with Network command to
evaluate the prospects of Joe Applicant. You will find that Neuralyst
predicts Joe will most likely be a Medium credit risk, though he has
a few characteristics of a High credit risk. This matches the Medium
credit risk rating given to him by our (hidden) scenario rules.

There is nothing preventing finer subdivisions. Income could be
broken down into increasing increments of ten thousand. Bank credit
cards could be expanded to separately indicate Visa, MasterCard, or
American Express. It is quite possible that the neural network will be
able to make finer judgments with this additional information. The
disadvantage to much finer subdivisions is the cost of maintaining
them when establishing or updating the database and the additional
computation time for the neural network with more inputs to consider.
Your experience and judgment should guide the process.

Important Points

Separated or categorized input values can be used to convey
information to the neural network in a more efficient way.

5.5 Credit Rater — EZCREDIT.XLS {EZ Credit}



Too many categories can be burdensome to maintain and cost
additional computation time needlessly.

Your experience and judgment should guide the process to make
the most meaningful distinctions.

5.6 Marketing Analyzer — FIZZY.XLS {Fizzy Cola}

The demonstrations discussed so far have shown how Neuralyst can
be used for rule reproduction, generalization, prediction, pattern
matching, and association. FIZZY.XLS {Fizzy Cola} will demonstrate
one way in which neural networks can be used to analyze data.

In FIZZY.XLS {Fizzy Cola}, we meet the Vice President for Sales of
Fizzy-Cola. The Fizzy V.P. has divided the National market into eight
regions and assigned each region to a manager that reports to him.
As a great believer in decentralized management, he has allowed each
Regional Manager to allocate their advertising budget independently
of the others. The Fizzy V.P. is also scrupulously fair as he has made
sure that each region has an equivalent amount of advertising money
to spend in proportion to their population base.

Advertising money can be spent in four basic ways: In-store
promotions (for example, store displays, price discounting), direct
mail (of coupons or other promotional offers to homes), print media
(newspaper or magazine advertisements), and radio/TV
(commercials). When he reviews the results for the current quarter,
he discovers that each Regional Manager has developed a unique
allocation of advertising dollars for these four primary categories. He
also determines that the sales growth in each region has varied
greatly.

Of course, it would be possible to encourage the other regions to
duplicate the budget allocation developed by the Regional Manager
with the best sales results, but the Fizzy V.P. would like to find out if
an even more successful allocation can be developed using the
information contained in the current quarterly report.

The Fizzy V.P. has entered the report data into a worksheet. The
budget data has been listed by advertising category and region. Since

5.6 Marketing Analyzer — Fizzy.XLS {Fizzy Cola} 55



56

the different regions are not all exactly the same size, he has
eliminated population and other base factors by listing expenditures
in dollars per 1000 capita instead of total dollars and sales as
percentage growth rather than total dollars.

In addition to the standard data rows, there are five more rows. The
first four rows of these will be used to “probe” the neural network, once
Neuralyst has learned the relationships between the different
advertising budgets and each region’s sales performance. The probing
is done by taking each category in turn, and setting it to the maximum
value known for that category while setting the others to the
minimum values known for those categories. In this case, there are
four advertising categories, so there are four rows set up for probing.
Click on the cells in the range C14 to F17 to see the Excel formulas
used to generate the maximum or minimum values.

In each one of these cases, the probe will maximize one of the neural
network’s inputs, while minimizing all the others. In this way, we can
try and quantify the response of a neural network to individual inputs.

The Fizzy V.P. will use the information garnered from this probing to
develop a new budget allocation, which we will test for him by entering
into the last row.

To run this example:
1. Init Working Area — starting at N1
2. Set Rows — 6 through 17, 1 Row/Pattern, 1 Row/Shift
3. Add Input Columns —C, D, E,and F
4. Add Target Columns — H
5. Add Output Columns — J
6. Set Mode Flag Column — L
7. Set Network Size — 3 Layers, 4 Hidden Neurons
8. Set Network Parameters — Epochs per Update to 10

Train the neural network with this configuration. Neuralyst will be
active for a short time and then complete its training. At this point,

5.6 Marketing Analyzer — FizzY.XLS {Fizzy Cola}



Neuralyst has discovered the underlying relationships between
Fizzy-Cola’s advertising expenditures and sales performance!

Once the neural network is trained, run the neural network so that
the probe rows will be evaluated. When that is complete, you will see
the results of the probe in cells 314 through J17. The greatest output
occurs for Radio/TV, second is In-store, third is Print Media, and last
is Direct Mail.

Test this result by placing the values 5, 1, 2, and 10 in the cells C18
to F18, respectively, of the Test Budget row. H18 has already been
programmed with the formula used to model the sales performance
in the other cases of this scenario. You will find that the resulting
predicted sales growth of 26.75% is 0.5% higher than the best previous
case, the Northwest region. The Fizzy V.P. has achieved his goal of
bettering the prior sales performance using data analysis from
Neuralyst.

The technique shown here can be very useful; however, you should
always test the results for sensibility before using them as it is
possible to go astray.

First, it is important to minimize the number of effects that are being
analyzed, so that the effect of each factor can be seen more clearly. If
several factors are changing at the same time, then it will be difficult
to untangle the knot of inter-relationships. One way to do this is to
use ratios and percentages rather than absolute numbers. Another is
to hold parameters constant where possible. In the example here, the
ratio, dollars per capita, was used as input, the sales growth, as a
percentage, was used as the output and the total of advertising dollars
for each population unit was constant.

If the total advertising dollars in proportion to the population base
had not been constant, would that make the data impossible to
analyze? No. It would mean more probe cases would be needed, in this
case with varying totals so the response of the model to different total
amounts could be measured. Try experimenting with this case.

Second, this case is simplified in that all the inputs contributed
positively to the output result. In most cases, some of the inputs will
contribute negatively, that is the more the input is increased the more
the output is reduced. This case needs to be distinguished from the

5.6 Marketing Analyzer — Fizzy.XLS {Fizzy Cola} 57



simpler case where the input has little effect on the output.
Recognizing these distinctions is important to a correct analysis.

Additionally, there are times when two or more inputs may interact
with each other. These cases cannot be detected with probe cases that
only have one input set to the maximum. An example of this can be
seen in the LOGIC.XLS {Logic} or PARITY.XLS {Parity} demonstrations. In
either of those worksheets, the presence of one 1 on an input results
in a 1 on the output, yet two 1's results in a 0 — not a 2. If you suspect
that this may be occurring, then probe cases where two or more inputs
are set to their maximum values can be used.

Finally, in more complex cases, it may be useful to use probe cases
where one input varies by fixed increments, for example, 10% of the
input range per case, while the other inputs are held constant, usually
at the minimums. This will result in a response curve, which can be
plotted with Excel's charting capabilities. Each input can be probed
in thisway, resulting in a family of response curves that can be studied
to determine the characteristics of the internal model developed by
the neural network.

Important Points

Methodical probing of the neural network can lead to a successful
analysis of the input data and its underlying relationships.

The number of parameters being measured should be minimized
to ease the difficulty of interpreting results.

Positive, negative and inter-related effects should all be
considered and probe cases created to test for them if appropriate.

In some cases, generating response curves for each input may be
useful in achieving a successful analysis.

5.7 Fundamental Stock Analysis — AMETEK.XLS {Ametek}

In AMETEK.XLS {Ametek}, fundamental stock data (real world!) for the
last twenty years for a smaller (annual revenues about $800 Million)
New York Stock Exchange listed stock, Ametek (ticker symbol AME),

58 5.7 Fundamental Stock Analysis — AMETEK.XLS {Ametek}



have been entered into the worksheet. This kind of data is readily
available from a variety of sources. Two popular ones are the Standard
& Poors stock data sheets and the Value Line Investment Survey
stock reviews.

The data is primarily organized on a per share basis. These are: sales
revenue per share (Sls/Sh), cash flow per share (CF/Sh), earnings per
share (Ern/Sh), dividends per share (Div/Sh), capital spending per
share (Cap$/Sh), book value per share (BV/Sh), average price to
earnings ratio for the year (Avg P/E), relative price to earnings ratio
for the year compared to the overall market (Rel P/E), dividend yield
(Div %), and the average price per share for the year (Avg $/Sh). (If
you do not understand the terms used here please consult a stock
investment book to learn the significance of these and other
fundamental measures.)

While we could apply Neuralyst to this data directly, it would not be
the most effective way to present the data to the neural network.
Remember that neural networks work better if they are not required
to make many fine distinctions in the input values. While we don’t
know if the distinctions between the values in this example will be
critical, it is obvious that the values for many of the inputs take a
different value for each row. Thus we should assume that each of these
could be important to a successful forecast.

In order to satisfy the need to present the full range of the data to the
neural network while also resolving the need to minimize the number
of distinct values, we can present the differences between values. Thus
a 1 point change in an input value with a full range of, for example,
10 to 25 would only represent a 6% change presented in this way.
However, a 1 point change might represent 50% of the maximum
change from year to year when presented in the context of differences
between values.

There is another problem. Not all 1 point changes are equal! For
example, a 1 point change from a base of 10 is more significant than
a 1 point change from a base of 25. The first represents a 10% change,
while the second represents a 4% change. One way to resolve this
discrepancy is to take the logarithms of the input values. Logarithms
have the property that a given percentage change in an input value,
regardless of the starting point of the input value, will always be

5.7 Fundamental Stock Analysis — AMETEK .XLS {Ametek} 59



60

represented by the same change in logarithmic value. Thus, a 50%
increase, whether starting from 10 or from 25, would always be
represented by a change of 0.41 in the natural logarithm (it doesn’t
matter whether common or natural logarithms are used as long as
the usage is consistent).

However, taking differences or logarithms may not make sense if the
relationship between instances is not structured in time or some other
dependent fashion. For example, taking differences between
instances in MUGBOOK.XLS {Mug Book} would not make sense. This is
because there is no reason to expect any relationship or special order
between the processing of one criminal and the next criminal.

In those problems where there is a structured relationship, such as
time, between instances, examples, or cases, these two methods are
individually applicable. They can also be combined by taking the
differences of the logarithms of the input values.

In order to implement the techniques just described, the differences
of the logarithms of each input value from the previous input value
have been computed in a new area just below the original area. (Note
that the differences of the logs of two values is the same as the log of
the ratio of those values. Though we describe it as differences, the
formulas programmed are expressed in the ratio form since only one
log is computed rather than two in this form.) Since each row in this
area requires two rows from the original area so it can be computed,
the first year, 1974, can no longer be shown.

Once the new area has been set up, we need to establish the training
targets. In this case, we take advantage of future knowledge.
Basically, we are setting the neural network to find any relationships
that may exist that can be correlated to, or used to forecast, what will
happen in the succeeding year during the training process. When the
training process has ended, the future knowledge will no longer be
available - but by then the relationships that could forecast that future
may have been uncovered.

The Buy training target is established by “peeking” ahead to the next
year and checking if the stock price has risen by at least 20% from the
current year. If it has, then that is deemed a positive movement and
the stock should be purchased in the current year, indicated by a BUY

5.7 Fundamental Stock Analysis — AMETEK.XLS {Ametek}



in the Buy column. Click on the cell N29 (or similar cell in column N)
to see the formula used to generate this target.

The Sell training target is generated in a similar fashion, but in its
case if the stock has not at least retained its current price, then that
is deemed a negative movement and the stock should be sold in the
current year, indicated by a SELL in the Sell column. Click on the cell
029 (or similar cell in column O) to see the formula used to generate
this target.

(Note that the last row has no targets for training or testing. Since we
cannot really look into the “future”, except in hindsight, the number
of rows that we “peek” ahead determines the number of rows that
must be left blank at the end of the Target columns.)

To run this example:
1. Init Working Area — starting at V1
2. Set Rows — 29 through 48, 1 Row/Pattern, 1 Row/Shift
. Add Input Columns — C through L
. Add Target Columns — N and O

. Set Mode Flag Column — T

3

4

5. Add Output Columns — Q and R

6

7. Set Mode Rows — 48, Set Symbol Row
8

. Set Network Size — 3 Layers, 6 Hidden Neurons
9. Set Network Parameters — Epochs per Update to 10

Train the neural network on the data with this configuration. After
some time Neuralyst will stop training. Has Neuralyst uncovered
relationships that can be used to forecast the price performance of
Ametek stock? Try running the neural network to make a forecast for
the most recent year, 1994. The forecast will likely be to Sell Ametek
stock for 1994, given 1993's data. As of the publication date of this
manual, that may or may not have been a good forecast. This is
because the current price of Ametek is up 20% primarily due to a 20%
stock repurchase that occurred in 1994. This is a reminder that a

5.7 Fundamental Stock Analysis — AMETEK .XLS {Ametek} 6 1



62

neural network cannot predict events for which no training or
modeling has been done.

In fact, this forecast, while it is useful for this demonstration, should
not be relied upon at this point, independent of the probable outcome
of asingle prediction. In this case, there are only 17 data sets available
to train the neural network. For real-world data, particularly data
that is as noted for its “noise” content as stock data is, much more
training data should be presented before the forecasts of the neural
network should be considered in any serious way.

This can be done by going backward and presenting data from more
previous years than shown in this example. Unfortunately, this
approach may be difficult to implement for at least two reasons. First,
data much older than this is not as readily available. Second,
economic, competitive and other structural conditions often change
significantly over such a long duration. In the case of Ametek, for
example, it was a much different company in the 1950’s and 1960's
than it has been in the 1970's and 1980's. In order for the neural
network to identify the relationships between input factors while
these underlying conditions are changing, even more data must be
presented so enough cases representative of their effects can be seen
by the neural network. After a certain point, this can become an
impossible task. As an example, events such as the aforementioned
stock repurchase are rare or unique events which have few
precedents.

Another approach that is more likely to be successful is to present
data from a large number of companies during the same time period.
This would hold certain implicit factors constant, for example general
economic climate, interest rates, credit availability, inflation, and so
on, allowing the neural network to measure the factors that lead to
relative differences in performance. Two specific variations on this
approach would be: 1) to train the neural network on companies that
are in the same industry or produce the same product, or 2) to train
the neural network across the spectrum of companies that are
structured in similar ways, for example conglomerates or
highly-leveraged companies.

5.7 Fundamental Stock Analysis — AMETEK.XLS {Ametek}



Important Points:

Taking differences between input values is a useful technique for
improving the ability of the neural network to interpret the data.

Taking logarithms of input values is another useful technique for
improving the ability of the neural network to interpret the data.

Combining the two techniques of differences and logarithms is
also useful.

For either or both of these techniques to work there should be a
structured relationship, such as time, between instances,
examples or cases.

Training a neural network for forecasting usually requires some
use of “future knowledge”.

Be sure there is enough training data and the neural network is
tested thoroughly before you rely on its predictions.

Be sure the training data you use does not contain more
underlying conditional variations than you want the neural
network to consider.

5.8 Technical Stock Analysis — DJIA.XLS {DJIA}

In DJIA.XLS {DJIA} price data on a weekly basis for the Dow Jones
Average of 30 Industrial stocks from the beginning of January 1993
through September 1994 have been entered into the worksheet. This
data consists of the highest price for the week, the lowest price for the
week, the closing price on the week and the total volume of stocks
traded in the market. This kind of data, whether on a monthly, weekly,
daily, hourly, or even minute-by-minute basis is the starting point of
most technical analysis methods.

We will use another set of techniques, as distinguished from the
differences-of-logs form used in AMETEK.XLS {Ametek}, to pre-process
raw price data into more meaningful forms. These will include a
differences of inputs over time and moving averages. (Some of the
pre-processed columns in this example were actually generated by the

5.8 Technical Stock Analysis — DJIA.XLS {DJIA} 63



64

accompanying package Trader’'s Macro Library. See Appendix G for
a discussion of how to load and use this macro toolbox for technical
investment analysis.)

In the first pre-processed input column, the Close of the current work
is detrended by taking the difference from the previous week, this is
labeled Delta Close. The second pre-processed input column is
generated by taking the ratio of the current Close to a previous Close
as a percentage, this is labeled ROC or Rate of Change. The third
pre-processed input column is generated by taking the difference of
the Close of the current week from the Close five weeks ago. This
difference over long periods of time is called “Momentum” by technical
investment analysts. Finally, the last pre-processed input column is
filled with the difference between a five week Moving Average of the
Close for each week and a three week Moving Average of the Close for
each week. This difference of Moving Averages of different periods is
known as a Moving Average Oscillator by technical investment
analysts. (Notice that the ROC, Momentum and Moving Average
cannot be computed until a number of weeks of data are available.
This will result in the first five rows being skipped when we give the
Set Rows command.)

In setting up the targets for training, we will make use of future
knowledge as in AMETEK. XLS {Ametek}. Our Buy and Sell targets will be
determined by the future value of the Close column. If the Close for
the next week will be higher than the Close for this week, then the
Buy target will be set for this week. If the Close for the next week will
be lower than the Close for this week, then the Sell target will be set
for this week.

(As in AMETEK. XLS {Ametek}, the last row has no targets for training or
testing. Since we cannot look into the “future”, except in hindsight,
the number of rows that we “peek” ahead determines the number of
rows that must be left blank at the end of the Target columns.)

We will use a new technique in this neural network example, that of
iterated data windows. So far in these examples, we have only set the
neural network to train on one row of the worksheet at a time. For
time based problems, this corresponds to making predictions while
looking at data from just one point in time. In fact, there is every
reason to believe that the relationships between values at different

5.8 Technical Stock Analysis — DJIA.XLS {DJIA}



points in time are also significant to successful prediction. To do this
we will set the number of Rows per Pattern in the problem definition
to be 5. This corresponds to looking at the most recent 5 weeks of price
data in every prediction. With this setting, Neuralyst will present 5
weeks at a time to the neural network, stepping one week each time.

To run this example:
1. Init Working Area — starting at Ul
. Set Rows — 11 through 97, 5 Rows/Pattern, 1 Row/Shift
. Add Input Columns — H through K
. Add Target Columns — M and N
. Add Output Columns — P and Q
. Set Mode Flag Column — S
. Set Mode Rows — 97, Set Symbol Row
. Set Network Size — 3 Layers, 12 Hidden Neurons

© 00 N o 0o b~ W DN

. Set Network Parameters — Training Tolerance to 0.2,
Testing Tolerance to 0.4,
Epochs per Update to 10

Train the neural network with this configuration. After a short time
Neuralyst will stop training. Has Neuralyst learned to predict the
price performance of the Dow Jones Industrial Average from price
data alone? Try running the neural network on the remaining data
and compare the results to the targets. How did it do?

Most likely the matches are good, perhaps 60-70%, but not as high as
we are used to from prior examples. Technical analysis of stock (or
commodity) prices is a difficult problem and generally any predictive
results with an accuracy better than 50% could provide an important
edge in a trading situation.

Further, as with AMETEK.XLS {Ametek}, the number of weeks of data
provided in this example is comparatively small when the high noise
factor in stock prices is considered. In actual use, much more data and
more extensive use of the kind of pre-processing we did with ROC,
Momentum, and Moving Average Oscillator could help in establishing

5.8 Technical Stock Analysis — DJIA.XLS {DJIA} 65



more sophisticated neural network models for stock or commodity
trading.

Most important though is the complexity of the system being modeled
by the neural network. If a system has a well-defined structure with
clear relationships between data, then a neural network will do well
when modeling it. If a system is completely unordered and random,
or its relationships are much weaker than the noise that is present,
then a neural network will not be able to model it successfully.

Important Points:

Multi-row data windows are an important technique to present
time structured (or any other inter-related) data to a neural
network.

Developing and providing intermediate processing results can
help the neural network build more sophisticated internal
models.

Predictive accuracy is related to the complexity of the system
being modeled and the amount of “noise” present in the system.
In the worst case, random systems cannot be modeled by neural
networks.

5.9 Shape Recognizer — SQUARE.XLS {Square}

66

SQUARE.XLS {Square} will demonstrate the use of Neuralyst's
two-dimensional capabilities for analysis and pattern matching
through the recognition of squares as distinguished from other
shapes. This is a simplified, but highly relevant example, derived from
the problem of recognizing shapes in applications such as robotic
vision, satellite image processing, or optical character recognition.

In these and other similar applications, image data is organized as a
rectangular grid of values, where each grid position is called a pixel,
or picture element. A photograph or other image may be scanned
(another term is digitized) and converted to pixels by imposing this
grid over the image and converting the amount of light that is present
at each grid position into binary, discrete or continuous values. The

5.9 Shape Recognizer — SQUARE.XLS {Square}



greater the number of pixels, the greater the scanning resolution, and
the more accurate a representation the scanned image will be of the
original image.

For medium resolution image processing, it would be common to see
grids of 100 by 100 to 250 by 250 and with pixels having 16 to 256
discrete values. For high resolution image processing, grids of 500 by
500 to 2000 by 2000 and pixels having 1000 to 4 billion (essentially
continuous) discrete values are possible. The resolutions of your
computer monitor or TV screen are representative of the high-end of
medium resolution or the low-end of high resolution displays.

In SQUARE.XLS {Square} pattern data has been entered into the
worksheet as symbolic values in an input grid that is 6 by 6; obviously
low resolution, but the principles remain the same. This data consists
of alternate examples of squares in various positions in the field, and
assorted odd-shaped, but otherwise regular, “blobs”. The neural
network will be trained to symbolic outputs, indicating whether the
shape is a square or is a blob.

In order to train a neural net on image data we will need to have it
accept inputs in a two-dimensional form. We will do this by expanding
on the iterated data window technique used in DJIA.XLS {DJIA}, by
increasing the value of Rows to Shift per Pattern in the Set Rows
command from 1 so that the number of Rows to Shift equals the
number of Rows per Pattern. This technique may be called
Stepped data windows.

This example will also make use of input noise. Input Noise is one of
the parameters that can be set by Set Network Parameters. Setting
moderate values of Input Noise provides for slight variations in the
value of training data between each training epoch. Moderate values
of input noise encourage the neural network in the development of
generalizations. Large values of Input Noise are usually not useful.

To run this example:
1. Init Working Area — starting at R1
2. Set Rows — 6 through 90, 6 Rows/Pattern, 6 Rows/Shift
3. Add Input Columns — C through H

5.9 Shape Recognizer — SQUARE.XLS {Square} 67



68

4. Add Target Columns — J and K

5. Add Output Columns — M and N

6. Set Mode Flag Column — P

7. Set Mode Rows — 90, Set Symbol Row

8. Set Network Size — 4 Layers,
36 neurons on Layer 2,
9 neurons on Layer 3

9. Set Network Parameters — Input Noise to 0.3,
Epochs per Update to 5

Train the neural network with this configuration. After a short time,
Neuralyst will stop training. Try testing the neural network on the
additional cases given. You will find that Neuralyst has learned to
distinguish squares from other shapes!

Try seeing what happens without Input Noise. Train with Input Noise
reset to 0 a few times. While Neuralyst will still distinguish most
shapes, it will not train as consistently nor perform as reliably. Try
increasing Input Noise to larger values, up to 1. How well does the
neural network train or perform under these conditions?

In addition to encouraging the neural network to develop
generalizations, moderate values of Input Noise may also be used help
keep a neural network from getting trapped in local minima (see
Section 5.1).

You have probably noticed that this example uses a four layer
network. Try multiple runs with only three layers (36 hidden layer
neurons). You will find that Neuralyst gets the right answers most of
the time, but not as often as with the four layer network suggested.
Extra layers can improve a neural network’s generalization
capability, particularly when there are complex features in the data.

The technique we used in this example, iterated or stepped data
windows, is primarily used for conserving data space and retaining
data in formats familiar to the user. The neural network itself is not
given any information about these organizational details when it is
being trained or tested. Neuralyst presents all data items, regardless

5.9 Shape Recognizer — SQUARE.XLS {Square}



of their position in time or space, consistently to the neurons of a
neural network so that any relationships between different neurons
are developed as part of the training process.

As a matter of fact, this example could have been presented so that
each grid of 6 by 6 was presented as a single row of 36 values with the
same results. Similarly, three-dimensional and higher-order data
structures can also be presented to Neuralyst by remapping them into
a one- or two-dimensional format.

Important Points:

Use stepped data windows to build neural networks to analyze
two-dimensional problems.

Use moderate values of input noise to improve training
consistency and encourage generalization by the neural network.

Use moderate values of input noise also to help keep neural
networks from getting trapped in local minima during training.

Adding more neural network layers can improve analysis
capabilities when complicated relationships are present in the
data.

Multi-dimensional data structures can be presented in many
ways to a neural network; the neural network will develop the
necessary structural relationships.

5.9 Shape Recognizer — SQUARE.XLS {Square} 69



70 5.9 Shape Recognizer — SQUARE.XLS {Square}



Chapter 6
Advanced Neuralyst Topics

6.1

Input and Output Value Ranges

If you have read Chapter 3 carefully, you will be aware that neural
network outputs can only range from 0 to 1. If you examine the sigmoid
that is the default activation function for every neuron in the neural
network, you can see the reason for this is a mathematical
consequence of the way the sigmoid function works. In fact, a neural
network also works best when its inputs range from O to 1, though the
limitation here is not as absolute as for the outputs. While the
examples we've shown used many inputs and outputs that complied
with this range restriction, there were also instances where that
wasn't true and Neuralyst still worked. In fact, if none of the values
held to the restricted range, Neuralyst would still have worked.

So how does Neuralyst deal with these unrestricted ranges when
neural networks work best within the restricted range of 0 to 1?
Basically, Neuralyst pre-processes all input and output data and
performs offset and scaling operations to match the actual ranges to
the range 0 to 1. For example, if an Input column has values that
range from 3 to 11, first 3 is subtracted so that the new range is O to
8, then each value in the new input range is multiplied by 0.125 (the
reciprocal of 8) so that all values now fit in the range 0 to 1. In the
case of outputs, the reverse process takes place.

In all cases, you are able to use numeric values that make sense or
are convenient to your problem. Neuralyst will adjust the data in the
input or output direction so the neural network is able to operate
within its best value ranges.

6.1 Input and Output Value Ranges 71



72

Neuralyst also offers a variation of this scaling process through
the Scaling Margin parameter in Set Enhanced Parameters.
Scaling Margin causes the input and output data to be mapped into
a smaller range than 0 to 1. A setting of 0.1, or 10%, in the Scaling
Margin parameter causes an extra 10% to be reserved, 5% each at the
bottom and top of the range, so the input and output data are now
mapped into the range 0.05 to 0.95.

The allocation of Scaling Margin serves at least two functions. First,
there are some problems, particularly those where the inputs and
outputs are linear and continuously variable, that are better modeled
when the activation function is restricted to output in the linear
portion of its transfer function than the saturated, or non-linear,
portion of its transfer function. Second, there are instances when new
input or output values may be expected to be above or below those
used to train or test the neural network model. Reserving some
headroom allows some continued utility to the neural network model
under these conditions, as long as the variant input or output values
are not excessive.

Neuralyst also offers another extension to data representation by
allowing the definition of symbolic input and output values. By
defining a Symbol List for each Input or Target column, the Symbols
are taken in order and interpreted for you. For example, if the
Symbol List is defined as <RED, GREEN, BLUE>, then the range is
divided into three equal subranges of 0 to 0.33, 0.34 to 0.66, and 0.67
to 1. An input value that is set to BLUE will be entered as 0.83, the
center value of the 0.67 to 1 subrange. An Output value that is 0.95
will be found to be in the BLUE subrange and reported as BLUE. All
the details of mapping Symbols to subranges and interpreting values
to Symbols are all managed by Neuralyst for you.

A final issue regarding input and output value ranges are the defined
minimum and maximum values for Input and Target columns. Each
time that a neural network model is trained, the minimum and
maximum values for each column define the range for that column
that must be mapped into the neuron input or output range of 0 to 1,
or subrange reduced by the Scaling Margin. If new data is later added
to the neural network model that has a lower minimum or higher
maximum in that column then that will cause a shift in all the values
previously used to train the network. For any significant shift in the

6.1 Input and Output Value Ranges



minimum or maximum values, this will invalidate the training of the
neural network.

The MIN scale row and MAX scale row mechanism allows the actual
minimum or maximum values at the time of training to be recorded
and used to fix the scaling range to the correct range that was used
for training. The Scaling Margin parameter will extend the set range
by the designated amount allowing values that fall within the
headroom region to be accepted, even if new values are added which
exceed the stated range. If the MIN scale row and MAX scale row are
set and values fall outside the Scaling Margin modified range, then
the neural network will reject those values.

6.2 Setting Network Size

Setting the optimum network size for a problem is an intriguing and
sometimes difficult process. The number of inputs and outputs are
automatically defined by the structure of the problem. The number of
hidden layers and number of neurons in each hidden layer are left to
you (within the limits of Neuralyst's capabilities).

It has been shown that an arbitrarily large three layer (that is one
hidden layer) backpropagation network can approximate just about
any real-world mathematical function to an arbitrary degree of
accuracy. If this is true, then why does Neuralyst allow as many as
six layers (that is four hidden layers)? This is because in the three
layer case the number of neurons in the single hidden layer may have
to be so large that the neural network is impractical or impossible to
implement. Multiple hidden layers allow greater flexibility for
generalization (internal organization and model development) during
the learning process and can significantly reduce the need for large
numbers of neurons.

So how do we determine the number of hidden layers? There are no
real rules regarding this, only rules of thumb. Generally, the more
complex the problem and the more inter-related you perceive the
problem characteristics to be, the more layers will be needed. It is best
to start with three or four layers. Add additional layers only as the

6.2 Setting Network Size 73



training proves to be difficult or impossible or as the predictive ability
of the neural network proves unsatisfactory.

How do we determine the number of neurons in each hidden layer?
Again, there are no real rules regarding this, just rules of thumb.
Generally, it is best to have a pyramidal shape, that is have the
greatest number of neurons in the initial layers and have fewer
neurons in the later layers. A good working range for the number of
neurons in each layer is to have a number from mid-way between the
previous and succeeding layers to twice the number of the preceding
layer. For example, if there were 12 neurons in the previous layer and
3 neurons in the succeeding layer, then a working range for the
neurons in the intermediate layer would be about 6 to 24.

Often setting network size is a process of adjustment and iteration.
You need enough layers and neurons for characteristics to be
identified and generalizations to be made, but too many layers and
neurons will be costly in computation time.

A methodical process that is often successful is to increase the size of
the network (layers and neurons) in large jumps and look for
successful training, then decrease the network size incrementally and
observe the predictive accuracy.

The Neuralyst Genetic Supervisor can be used to automate the neural
network optimization process using genetic technology. See Chapter 7
for a further discussion.

6.3 Learning Rate, Momentum, and Training Tolerance

74

The settings of Learning Rate and Momentum control the way in
which the error is used to correct the weights in the neural network
for each training case. Some settings may cause surprising behavior.

When Learning Rate is set to high values (close to 1), there is some
possibility that you will see unstable behavior. This is often evidenced
as wildly varying values of RMS Error (remember that neural
networks also undergo learning plateaus which may show small
increases of RMS Error for brief periods; we are not talking about
these). As the Learning Rate is set lower the possibility of unstable

6.3 Learning Rate, Momentum, and Training Tolerance



behavior is reduced. Generally, when Learning Rate is set to 0.25 or
less, you will not see any unstable behavior. However, lower values of
Learning Rate will result in longer training times.

A more aggressive, though workable, approach is to set the
Learning Rate high and to decrease it if you see any unstable
behavior. This is essentially what happens when you use the Adaptive
Learning Rate mode in the Set Enhanced Parameters command.
A more conservative approach is to start with Learning Rate low and
to try increasing it if training is taking too long.

The higher the value of Momentum, the greater the percentage of
previous errors is applied to weight adjustment in each training case.
For example, when Momentum is set at 0.5, then 50% of the weight
adjustment will be due to the current error and 50% will be the weight
adjustment applied in the previous case.

This means that any weight adjustment due to the error from one
training case will have a continuing effect with an exponential decay.
For example, consider a training case t; with Momentum set to 50%,
the weight adjustment will be portioned as just described. In the next
training case, 50% of the weight adjustment will be due to the error
from t+1, 25% will be due to the error from t and the remaining 25%
will be due to the previous cases. In the third training case, 50% of
the weight adjustment will be due to t+2, 25% will be due to t+1 12.5%
will be due to t and 12.5% from previous cases. As each case is
considered, then the effect on weight adjustment of each previous case
is halved (or reduced in proportion as determined by the Momentum
setting if it is not 0.5).

In the special case when Momentum is set exactly at 1, then 100% of
the previous error is used for weight adjustment. In the very first
training instance, there are no previous weight adjustments, thus the
first weight adjustment will be 0. Since the next weight adjustment
takes 100% of the current weight adjustment, that will also be 0. This
continues, regardless of how many training instances are considered.
This is why Momentum must be less than 1.

In the special case when Momentum is set exactly at 0, then 0% of the
previous error is used. Therefore, each weight adjustment is applied
as 100% of the weight adjustment due to the current training instance;

6.3 Learning Rate, Momentum, and Training Tolerance 75



76

no previous values are included in the adjustment. This is a workable
setting.

Setting Momentum to higher values helps to smooth out the training
process and prevent unusual cases from throwing the training off
track, while continuously correcting for consistent errors. Setting
Momentum lower may be appropriate for data which is more regular
and smoother or data for which the relationships to be learned are
relatively simple. It is generally necessary to experiment with
different values of Momentum to find an appropriate value for a
particular problem.

The Neuralyst Genetic Supervisor can be used to automate the
Learning Rate and Momentum optimization process using genetic
technology. See Chapter 7 for a further discussion.

The setting of Training Tolerance is used primarily to determine
how much training the neural network undergoes. When
Training Tolerance is set to a number, for example 0.4, Neuralyst will
continue training the neural network until the output of the neural
network for every training case is within 40% of the target range for
every target value. Thus, if the target range has values from 100 to
300, then 40% of the target range is 80, or 0.4 x 200 (300-100). Thus
every output value must be within 80 of the target value before
Neuralyst will stop training.

It is not usually useful to have the Training Tolerance set to greater
than 0.5. In the case of binary (0 or 1) values, Training Tolerance set
to 0.5 means that the outputs must be less than 0.5 to be considered
a 0 and greater than 0.5 to be considered a 1. While this is sufficient
for binary values, and proportionately tighter Training Tolerances
would be appropriate for multi-valued output cases, there are times
when you may want to set Training Tolerance tighter than strictly
needed to distinguish between the number of distinct outputs or to be
within some error allowance for continuous outputs.

Generally, neural network output accuracy on testing or running data
will be less than accuracy on training data. So, if a neural network
were trained to a Training Tolerance of 0.5, outputs, for example, that
should be 1's would range from 0.5 to 1. If it were then run on testing
data, the outputs that should be 1's might now range from 0.3 to 1.
Thiswould result in some outputs being treated as 0 when they should

6.3 Learning Rate, Momentum, and Training Tolerance



have been 1. Training to a tighter Training Tolerance, for example 0.4
or 0.3, helps alleviate these marginal conditions, in effect providing a
“guardband” between values that should be distinct or an extra
margin for error for values that are continuous.

However, setting Training Tolerance too tightly (close to 0) may create
additional problems. The first problem is a matter of practicality.
Tight values result in longer training times. The second problem is
more subtle. Since training time is increased, the opportunity for
overtraining is also increased.

Overtraining occurs as the neural network is forced to match the
target values more exactly. During this process it devotes capacity to
learning the exact values of the training data rather than to
generalization from the training data. If insufficient capacity is
available, then the Training Tolerance is not achievable and the
neural network will never stop training. If sufficient capacity is
available, then the Training Tolerance will be achieved, but testing
or running accuracy will suffer.

It is interesting to observe the behavior of the RMS Error generated
by the neural network on training data versus testing data as the
neural network trains. This can be done by setting the Error Limit
value in Set Network Parameters to a moderate value, for example
0.1, training the neural network, and then performing a
Plot Training Error. Typically you will see a reduction in the RMS
Error plot for the training data, with the rate of reduction changing
over time. If the neural network begins to overtrain, you may
eventually see it as a long plateau in the RMS Error plot for training
data; in some cases, the plot may begin rising. However, you will
generally see it much earlier as an increase or rise in the RMS Error
plot for testing data.

The Error Limit setting and the Plot Training Error command are
powerful tools for detecting the onset of overtraining; though at the
expense of increased processing time.

6.3 Learning Rate, Momentum, and Training Tolerance 77



6.4 Learning, Weights, and Multiple Solutions

/8

Learning takes place in neural networks through aweight adjustment
process that is driven by the error developed by the neural network
in each training instance. In a sense, you can visualize each weight
set as defining a point on a globe (using weights as latitude and
longitude on the globe). A neural network weight set that produces
the desired outputs then corresponds to a special location on that
globe. The training process is then similar to the game of “hot-or-cold”;
as each training instance is presented, the neural network may be
told that it is “cold” (or “hot”), in which case it moves a lot (or a little)
across the globe by adjusting its weights a large (or a small) amount.
As the neural network gets closer to the right location, it will get
“hotter” until it moves just enough to find the spot.

The weight adjustment process for a given weight of each neuron is
dependent on the prior value of the weight, the actual output, the
desired output and the related input for that neuron (see Section 3.4).
If the weights for all neurons were set to the same initial value, then
all neurons having the same output value and the same input values
in a training instance would have those weights adjusted by the same
amount (since the weight, input, output and desired output would be
the same). This is not the most desirable behavior and under some
circumstances can lead to a failure to learn (like going around in
circles). By setting the initial weights of a neural network to random
values, this undesirable behavior is avoided. However, this
randomization process raises another issue.

It is possible that more than one weight set will satisfy the input data
and training constraints (like looking for cities with population over
1 million that have English as the primary language — New York,
Los Angeles, London, and others would fit). In such cases, the initial
value of the random weight set (starting point) could change the
solution (city) the neural network finds each time. It is possible that
copying a randomized weight set, saving it, and copying it back every
time you wished to restart training could minimize this problem.
However, reducing, extending or even changing the sequencing of the
training data could change the solution found as well.

The existence of these multiple solutions may be disturbing to you
since they can manifest themselves as different predictions or

6.4 Learning, Weights, and Multiple Solutions



behavior by the neural network. However, within the constraints of
the problem presented, any of these are perfectly satisfactory
solutions, so the neural network has no reason to prefer one over the
other. If you have such a preference, then you need to provide more
training data.

Setting Training Tolerance to high values also has the effect
of creating multiple solutions artificially. Setting any
Training Tolerance is analogous to drawing a circle around the special
location (or locations) that is desired. Any given point in that circle
would be a satisfactory solution. If the Training Tolerance is low
enough (circle is small), most weight sets (corresponding to points
within the circle) would behave in much the same way. If the
Training Tolerance is high enough (circle is large), some weight sets
may behave differently than others.

6.5 Some Causes of Poor Results

If a neural network is difficult to train, tests poorly, or if its real-world
performance doesn't match its training and testing performance, what
can be done? The answer to this question lies primarily in having
sufficient experience with neural networks to understand their
capabilities and limits. The more neural networks you design and use,
the better you will become at getting the best results from them. In
many ways this is as much an art as a science. Until that experience
is gained, here are some considerations.

First, the neural network needs to be properly sized for the problem.
As discussed before (see Section 6.2), the number of layers and
number of neurons are under your control: too small a network and
the neural network may not be able to learn the problem; too large a
network and the neural network takes longer than necessary to train.
You need to observe the training behavior and test results to make
these judgments.

Second, also as discussed before (see Section 6.3), the neural network
may be overtrained. One way, already mentioned, to avoid
overtraining is to set a looser Training Tolerance (so that training
stops sooner). A second way is to set one of the cutoff limits so that

6.5 Some Causes of Poor Results 79



80

Neuralyst will stop training after a certain number of epochs, after a
certain amount of time, or if RMS Error starts increasing.

Another technique to prevent overtraining, particularly with a
limited training set, is to modify the training data from presentation
to presentation so that some noise is present. That s, vary the training
data slightly with successive presentations so that the network
doesn’t recognize the exact values presented but rather the general
pattern. This can be done by setting Input Noise to small values. You
must choose the amount of noise added so that it is sufficient to
encourage generalization without overwhelming the underlying
relationships.

Another way you can address this is with more training data, enough
so that the neural network is forced into generalizations rather than
specifics. When preparing more data, be aware that some underlying
factors may not be constant and may have changed over the extended
training set (or even in the original training set); this is particularly
relevant for time-based data. If increasing the data set also increases
the amount of variation of such factors, then there needs to be enough
cases representative of each combination of factors for the neural
network to be able to distinguish between these. For example, it may
be very relevant to a fundamental analysis based model of a given
stock that the most current rise in sales was due to war-driven
revenues; however, without one or more additional examples of this
effect from other wars, the neural network may not be able to learn
the reason for the rise.

When the decision is made to increase the amount of data used for
training after experiencing poor performance, another decision must
also be made. Should the training be done incrementally, that is,
resume training with the existing weight set while adding the new
data, or should the training be restarted from a completely “blank”
neural network? The answer to this really depends on the problem
and its relationships.

If there is only one weight set that the neural network can develop to
satisfy the relationships inherent in the input data and targets, then
the incremental training and the blank-slate retraining will both
achieve the same general solution. If there are multiple weight sets
that the neural network can develop, due to the existence of multiple

6.5 Some Causes of Poor Results



sets of relationships that are consistent with the data or due to a loose
setting of Training Tolerance which might allow several solutions that
are correct within the tolerance range, then the weight set actually
developed by the neural network will depend on how the training was
done.

While the weight set developed by the neural network in any case will
satisfy the data presented and constraints established during
training, it is possible that some other weight set, if it exists, might
be a better predictor during testing or running (see Section 6.4).
Different neural network weight sets (and thereby different predictive
behavior) may develop when trained incrementally as compared to
training from a blank-slate. This is often an indicator that the
Training Tolerance has been set high enough that multiple solutions
are acceptable. This may also be an indication that one or more factors
or relationships changed over the initial training period versus the
incremental periods. This may not be a problem unless you don’t have
enough data representative of these changing factors or relationships
(see the next paragraph). Usually, the only way to verify the existence
of this phenomenon in your problem is to try training with different
increments and observing the resulting predictive behavior.

In some cases, results may be poor because you haven't chosen a
complete set of data representative of the conditions that are relevant.
This was alluded to earlier in terms of the number of cases in the
training data being sufficient to be representative. But this also
applies with regard to the different input types that you choose to
present. For example, if you were to design a neural network for
predicting customer activity in a department store, you would
probably find that it would be more accurate if some inputs indicated
Federal and local school holidays, though your first attempt to build
the model might only have considered the day of the week.

In fact, the success of a neural network depends to a large extent on
your ability to find the relevant types of input data and the manner
of their presentation. It is possible to present all the data types which
you perceive to have any relevance. In this case, the neural network
will, if it has enough capacity, learn which data types are really
relevant and which it can ignore in making a prediction. However,
this raises the cost of obtaining and maintaining the data for training
the neural network. Further, it requires greater computer resources

6.5 Some Causes of Poor Results 81



82

in memory space and computing time in order to process the increased
neural network size. Realistically, you must select just a few data
types that you think are most relevant and include or exclude a few
types over time as you measure the performance of the neural
network.

In many cases, input data can be improved through restatement or
intermediate processing. A neural network can develop many internal
operations and correlations on its own; however, it makes no sense to
train the neural network to perform, for example, a moving average,
when Excel can compute it more exactly and more easily. Performing
these intermediate computations can reduce the training time, free
neurons for generalizations and, in many cases, facilitate the process
of generalization. (Software programmers are familiar with this last
phenomenon; the choice of data structures and programming
languages makes some operations much more or much less difficult
to implement even though they can all be expressed ultimately.)

The neural network targets deserve just as much thought as the
inputs. In some cases, for example, rule reproduction, the targets are
fairly obvious and easy to state. In other cases, particularly with
regard to predictive models, the targets will require some thought in
order to achieve the best statement. (Oracles throughout human
history have been notorious for requiring very careful statement of
the questions put to them!)

For example, the target for a technical analysis based stock model
could be stated in many ways: a future price level, a future price
change, a future price movement (up versus down), the number of
days to an up or down move, or the volume of shares to be traded prior
to an up or down move. Which of these is the best target depends not
only on what you want to achieve but also on the kind of data available
to be presented to the neural network. A neural network cannot make
any oracular predictions (despite the comment in the last paragraph),
it can only develop predictions from relationships that are present in
the data put to it.

These are just a few points of consideration if you find yourself having
a difficult time solving your problem with a neural network. While
there are many other points that could be made, this will help you
over a large number of tough spots.

6.5 Some Causes of Poor Results



6.6 Experimenting with Enhanced Neural Networks

So far our discussion has focused on the standard backpropagation
neural network, as described in Chapter 3. Neuralyst also provides
several ways to modify the standard backpropagation neural network.
These can be grouped into the categories of selectable neuron
activation function, the ability to force weights to zero if they become
“insignificant”, and the ability to adapt learning rate dynamically in
proportion to the error of the neural network output. Let's see how
these enhanced functions can help you to develop a better neural
network.

Neuron activation functions cause a “decision” to be generated from
a neuron. Thus changing the neuron activation function or its
activation parameters will change the nature and characteristic
behavior of the decision process. Six basic activation functions are
available in Neuralyst: Augmented Ratio, Gaussian, Hyperbolic,
Linear, Sigmoid, and Step. The behavior of all of these functions,
except the Step function, can be further adjusted through a Function
Gain parameter.

The Hyperbolic, Linear and Sigmoid functions are similar to each
other. They all generate inhibitory outputs for negative inputs and
excitatory outputs for positive inputs.

1.00 e

IZISEI/'

£l

7

e

——— : 040

Figure 6-6 Sigmoid Function

The Sigmoid function typically has a narrow region about zero
wherein the output will be roughly proportional to the input, but

6.6 Experimenting with Enhanced Neural Networks 83


Shal Farley
 


outside that region the Sigmoid function will limit to full inhibition or
full excitation. Thus a Sigmoid function is a switch with an
intermediate range where it can be discriminating.

100
-

-

050 | /

A

Figure 6-8 Hyperbolic Function

The Hyperbolic function is shaped exactly like the Sigmoid function,
but it ranges from -1 to +1 rather than 0 to 1. Thus it has the
interesting property that there is inhibition near 0, but values at
either extreme will be excited to full levels, but in opposite sense. A
Hyperbolic function is also a switch with an intermediate range where
it can be discriminating.

i
a7s | //

S
nsng’f

Figure 6-7 Linear Function

The Linear function always generates outputs which are proportional
to the inputs, up to the level of full output. A subtle but important
distinction is that the Linear function is stepped, at the point when it

84 6.6 Experimenting with Enhanced Neural Networks


Shal Farley
 

Shal Farley
 


transitions from proportional output to full output, whereas the
Hyperbolic and Sigmoid function are always smooth, that is
differentiable. Differentiability of the neuron activation function is an
important factor in getting consistent backpropagation training
behavior.

100
II."\

.IIIII \l
.'ll

\
[
.f 050 III‘.,I

/ \
/ X
/ N

D

Figure 6-9 Gaussian Function

The Gaussian function is an interesting variation on the other
functions. It is derived from the equation which generates a normal
probability distribution and it has a central peak and low tails at both
ends. This results in excitation close to zero inputs and inhibition as
the inputs vary more significantly from zero.

6.6 Experimenting with Enhanced Neural Networks 85


Shal Farley
 


100

Figure 6-10 Augmented Ratio Function

The Augmented Ratio function is an upside-down version of the
Gaussian function. It is defined by the equation

X2

_1+x

2

which is also known as the augmented ratio of squares. It has a central
valley reaching 0 and high tails at both ends. This results in inhibition
near zero and excitation as the inputs vary significantly from zero.
The Gaussian function and Augmented Ratio are both smooth
(differentiable).

0,50

—_—— . D60

Figure 6-11 Step Function

The last function, Step, is not generally very useful, but it can be
interesting to observe its behavior for simple problems. Itwas actually

6.6 Experimenting with Enhanced Neural Networks


Shal Farley
 

Shal Farley
 


the original activation function used in early neural networks called
Perceptrons. The Step function basically converts any negative input
into a fully inhibitive output and any positive input into a fully
excitatory output. This has the behavior of a switch; there is no fine
discrimination. It did not take long to reach the limit of capabilities
of Perceptrons and neural networks progressed beyond them.

Generally the Sigmoid function is far and away the most useful and
the Step function is the least useful. But an examination of the
characteristics of your own data and the desired decision function
behavior may lead you to try a non-Sigmoid function. Experiment!

Frequently inputs or connections will have a low contributory effect
on the output of a neural network. When this happens, the
backpropagation algorithm will change the weights over time to be
close to zero. However, there will still be some instances of excitation
which will cause the weight to jitter around zero. When this happens,
it increases the noise or uncertainty associated with an output.
Neuralyst has the option to select a threshold and to force weights
which fall below this threshold to be kept at a zero value. Forcing a
weight to zero is equivalent to breaking a connection in a neural
network.

Itis usually best to set this mode after some initial training. Otherwise
it would be possible for weights which start close to zero, but which
would have been adjusted to a respectable value, to be forced to zero
unnecessarily. Another approach is to complete training, then do one
epoch of training with this mode set. This can help to clear the neural
network of meaningless connections. When this mode is set, it is also
frequently interesting to perform an Unpack Weights command and
use the resulting display to correlate the zero weights with your input
data.

It is important to be judicious in your use of this mode. It is possible
that some critical analysis may hinge on the resulting fine shadings
or distinctions generated by these low value weights! Always test your
results and evaluate the quality of predictions before and after setting
this mode.

In some instances, it may be difficult to find a setting of Learning Rate
that will allow learning to occur but which doesn’t take an inordinate
amount of training time. This can happen because large settings of

6.6 Experimenting with Enhanced Neural Networks 87



Learning Rate cause too much adjustment to the weights during each
training epoch, causing the neural network to jitter around the right
area, while small settings of Learning Rate make too little progress
during each training epoch.

Neuralyst provides an option to enable an Adaptive Learning Rate to
address these situations. With this mode set, the Learning Rate
parameter is ineffective. Instead, Neuralyst will set the Learning Rate
to be proportional to the RMS Error generated during a training
epoch. Thus when a neural network is far away from being correctly
trained, the RMS Error will be high, and the Adaptive Learning Rate
will be at a maximum. As the RMS Error is reduced, the Adaptive
Learning Rate will be reduced proportionately. When the RMS Error
is very small and the neural network is on the verge of completing
training, the Adaptive Learning Rate will be at a minimum level still
able to achieve effective learning.

Note that it is not the best solution to enable the Adaptive Learning
Rate mode in all cases, since there are still many instances when a
large setting for Learning Rate will train a neural network perfectly
well. Setting the Adaptive Learning Rate in these instances will still
achieve correct and possibly even better training, but it will take
longer to complete the training, since the Learning Rate will be
smaller than could be useful.

6.7 Excel Charts and Neuralyst

88

The use of Excel’s built in charting functions can greatly enhance the
utility of Neuralyst. Neuralyst provides the Histogram Weights and
Plot Training Error commands (see Sections 8.2.8 and 8.2.10), but
Excel charts can be used with Neuralyst in many other ways.

One use is for the graphic presentation of your data. Thus, stock price
data can be shown as a High-Low-Close price chart, marketing data
can be shown as pie or bar charts, technical data can be shown as line
or scatter plots, and so on. Input data, target data and neural network
outputs can be shown as separate lines or regions, line extensions or
on their own charts.

6.7 Excel Charts and Neuralyst



A second use is to help you visualize the match between targets and
outputs after training. This is particularly useful with regard to
different settings of Training Tolerance. Comparison plots of targets
versus outputs can show you how well the neural network may be
learning and also let you see whether or not tighter Training
Tolerances may be needed.

Charts can also aid in visualizing the behavior of your neural
networks. One technique, discussed in the example
FIZZY.XLS {Fizzy Cola} (see Section 5.6), is to generate a response
curve for individual inputs to the neural network. This is done by
holding all inputs except one constant and then varying that one
evenly across its input range. The resulting response curves generated
in this way can give you a picture of how each input affects the outputs
both in direction and sensitivity.

Another technique is to plot the accuracy achieved on test data
for an increasing number of training epochs (by decreasing
Training Tolerance — see Section 6.3). If this technique is combined
with trials of different numbers of network layers and changing
numbers of hidden layer neurons, then it can be helpful in visually
identifying the optimum neural network configuration for your
problem.

Take advantage of Excel’s plotting capabilities. They can help improve
your presentation of the data as well as improve your understanding
of a given neural network and its behavior.

6.7 Excel Charts and Neuralyst 89



90 6.7 Excel Charts and Neuralyst



Chapter 7
Genetic Optimization of Neural Networks

7.1 Genetic Technology

A new feature of Neuralyst is the inclusion of a Genetic Supervisor
for enhancing the development of a given neural network model.
Normally, a user of Neuralyst must experiment with the
characteristics of a desired neural network model, adjusting the
number and types of Input columns, the neural network
configuration, and the neural network parameters in order to
determine the characteristics which best produce successful
predictions with the minimum amount of error or training time or
both.

The Genetic Supervisor will optimize the Input column set and
training parameters for a Neuralyst neural network model so that
subsequent usage or adaptation of the neural network model will
perform well as a successful predictor with a minimum amount of
training. This is done in an automated fashion, but at the expense of
a lengthy run for moderate size problems.

The Genetic Supervisor uses a special type of optimization technology
known as genetic algorithms. Just as neural networks are models of
biological neural networks that have the properties of adaptation and
inference; genetic algorithms are models of a selective evolutionary
process which develops superior entities from a population of entities.
The genetic algorithm used in Neuralyst attempts to select the best
subset of data from that provided as input, configure the best neural
network that will train with the data, and adjust the various
parameters that control the neural network to optimum points.

7.1 Genetic Technology 9 1



While there are many methods for determining the optimum solution
to well-defined problems; there are very few methods for finding
optimal solutions to unstructured, poorly understood, or partially
unknown problems. Neural networks and genetic optimization are
two of these limited set of methods.

7.2 Operation of the Genetic Supervisor

92

Although genetic algorithms are directly modeled after biological
systems and behavior, the specific terms used in these two disciplines
are different. The Neuralyst Genetic Supervisor uses terms from the
literature of genetic algorithms to describe its parameters and
behavior. Due to the close relationship to biology, the language and
terms used to describe genetic algorithms can be defined in terms of
their correspondance to genetics terms.

In biology, specific genetic terms are used to express the desired
meaning. The chromosomes of a biological genetic system correspond
to strings in an artificial genetic system. Chromosomes are composed
of genes which take on values called alleles. Examples of genes are
those for eye color or height; examples of alleles are blue and tall. The
corresponding terms in artificial genetic systems are features and
values. For example, in the genetic system in Neuralyst two features
are input column name and learning rate; these features may take
the values A and 0.85, respectively. The entire genetic package of
chromosomes is called a genotype corresponding to the entire package
of strings called a structure. In the Neuralyst genetic system, there
are three strings, one for Input columns, one for network
configuration, and one for network parameters; the combination of all
three representing a structure which can define a neural network
configuration. The expression of a genotype as a biological entity is
called a phenotype, which corresponds to the expression of a structure
as a candidate solution.

All the values of a structure represent the neural network
characteristics that uniquely define a candidate solution in the space
of possible solutions. The Neuralyst Genetic Supervisor evolves
successor populations, or generations, from a limited population of

7.2 Operation of the Genetic Supervisor



initial candidate solutions. It does this by treating the inclusion or
exclusion of each column of data in the full Input column set as
features; the number of layers and the number of neurons per layers
as features; and the control parameters of each neural network as
features.

These features are then varied in each new generation with the
resulting structure evaluated in terms of neural network fitness. Each
structure in the generation is evaluated and judged by either the
lowest RMS Error achieved after a fixed number of epochs or by the
number of epochs taken to achieve a minimum point in RMS Error.
These two measures represent neural networks that train to minimal
error or neural networks which train with minimal epochs. These
criteria can be applied to the set of training cases or the set of test
cases.

If the structure representing a neural network successfully meets the
fitness criteria selected, then the values of its features will be retained
and bred with other structures. For each generation, the Genetic
Supervisor generates a population of structures in one of two ways.
All the structures of an initial generation and a certain number of
structures in subsequent generations are created with features set to
random values constrained within specified limits. Subsequent
generations are created by cross-breeding the strings of successful
structures or occasional mutations of randomly selected features of
successful structures. Some or many of the weakest structures may
be culled, these are replaced with new structures.

Through this evolution-like process, an optimal neural network can
be developed. Note, however, that this process requires the training
of many versions of the neural network to determine an optimal one;
for neural network models that have large network configurations or
have large data sets this can be a lengthy process — but so can
biological evolution!

7.3 Structure Strings and Features

Each candidate solution is represented by a structure composed of
three strings. The strings represent the selection of Input columns,

7.3 Structure Strings and Features 93



94

the neural network configuration, and the neural network
parameters.

7.3.1 Input Column Selection

Each Input column that is selected as part of a neural network model
is included because the user believes that the data is correlated,
positively or negatively, to the desired output. However, the data may
or may not be in fact useful in predicting the output data. Further,
even if useful, the data may be redundant with respect to other data
already present. Thus the Genetic Supervisor treats each column of
data as an individual candidate for exclusion or inclusion.

Only the set of Input columns is considered for optimization as it is
presumed that a specified Target column and its corresponding output
column are always a necessary part of the model. In the few cases
where targets and outputs are redundant, then you will need to
restrict the targets and outputs for best performance.

The Input column set is represented internally by a string of features
which specifies the exclusion or inclusion of the Input columns for the
structure. There is a feature for every possible column that can be
included or excluded. There are two possible values for each feature,
inclusion or exclusion. The user may select a nominal percentage from
1 to 100% which represents the average rate of inclusion. If the user
wants to force all data to be included, then the user can set 100%. The
default setting is 75%.

A percentage less than 100% does not mean that 100% of the Input
columns will never be included; it means that achieving 100%
inclusion will require cross-breeding and mutation to reach that level.
Similarly, specifying 100% does not mean that there will never be
Input column sets that are less than 100%; it means that achieving
less than 100% inclusion will occur through mutation and subsequent
cross-breeding.

7.3.2 Neural Network Configuration

The first and last layer of each neural network is automatically
determined by the number of inputs and outputs defined by the
candidate solution representing a neural network model. The count
of included values in the Input column string represents the number

7.3 Structure Strings and Features



of inputs. The number of outputs remains constant and is determined
by the base neural network model. Within those constraints, the
neural network can have from two to six layers and a wide range of
variations in number of neurons per layer.

The neural network configuration is represented by a five feature
string, where the first feature represents the total number of layers
for the neural network and each subsequent feature represents the
number of neurons in the corresponding hidden layer. An implicit rule
is that if a lower layer feature has a value of zero neurons, then higher
layer features must also be zero. The user can constrain the maximum
number of layers and the maximum number of neurons per layer. The
default maximum settings are 4 layers, that is an input layer, 2 hidden
layers, and an output layer; with 30 neurons in the first hidden layer
and 10 neurons in the second hidden layer.

7.3.3 Neural Network Parameters

The training behavior of a neural network is controlled predominantly
by the user settable parameters for Learning Rate, Momentum, and
Input Noise. The Learning Rate applies a greater or lesser amount of
correction as a result of the error derived from a given case. The
Momentum averages the current error to a greater or lesser extent
with previous errors. The Input Noise factor causes the data to be
perturbed from a slight extent to none to simulate real world noise or
perturbations. These settings can affect the rate of training and the
robustness of the neural network on test cases. The neural network
training parameter features are represented by a three feature string,
where each feature of the string represents the value of a particular
parameter. The Learning Rate and Momentum can vary from almost
zero to one, while the Input Noise can vary from 0 to 0.1. The user can
constrain the minimum value of Learning Rate, the maximum value
of Momentum, and the maximum value of Input Noise. The default
values are a minimum of 0.5 for Learning Rate, a maximum of 1 for
Momentum, and a maximum of 0.03 for Input Noise.

7.3 Structure Strings and Features 95



7.4 Population Management

96

There are two controls which determine the management of structure
population. The first is total population Pool Size. The second is
population replacement Pool Mode.

7.4.1 Population Pool Size

The population Pool Size controls the number of structures created or
evolved in each generation. The number of structures remains
constant, but the management of the structures is controlled by the
population Pool Mode control.

Setting a large population pool provides a richer number of structures
to test and evaluate to generate an optimal neural network. However,
large pools will take greater amounts of time to test and therefore
search. Setting a small pool has the reverse effect, each generation
completes more quickly, but the pool is sparser and may take a longer
amount of time to reach an optimal network.

Current research indicates that if processing resources are limited,
corresponding to limited processing time, then the best strategy is to
select a limited pool of 3-5 structures and to weed out the weakest
structure at each generation. Conversely, current research also seems
to indicate that if processing resources are unlimited, corresponding
to unlimited processing time, then the best strategy is to pick as large
a pool as possible. The default population Pool Size is set to 3.

7.4.2 Population Management Mode

The population Pool Mode control is a switch which sets one of three
modes: Closed Pool, Immigration, or Emigration. These three modes
represent different population replacement strategies from
generation to generation.

With Closed Pool set, then the existing population pool will be evolved
with no new structures ever introduced except through cross-breeding
and mutation. With Immigration set, the population pool will be
evolved and each generation entirely new structures will replace the
weakest structures of the current pool with the remaining structures
being cross-bred and mutated. With Emigration set, each generation

7.4 Population Management



the best members of a current pool will be emigrated to an entirely
new population and cross-bred with the new population.

Closed Pool is similar to inbreeding in that weak structures are
perpetuated through the transfer of their strings. For very small pools
this is probably not useful; but for large pools, this may work fine.
Immigration corresponds to the most versatile population
management mode in that weak structures are continuously culled.
It should work well for small or large pools. Emigration may be best
for small pools, as it allows new structures to be tested rapidly and
compared to the best current structures. In the case of large pools,
emigration may also work well, but the characteristics of the best
structures may be rapidly diluted. The default population
management Pool Mode is Immigration.

7.5 Genetic Operators

Each time a population has been fully evaluated, each structure is
ranked by its fitness. The structures are then evolved to generate a
new population with each structure deriving its features from the
previous generation such that the most fit structures of the previous
generation have a higher chance of passing on their features in
proportion to their ranking.

There are two genetic operations the user can control to determine
the mechanism for passing features to the succeeding generation.
These genetic operators are cross-breeding and mutation.

7.5.1 Cross-breeding

The primary genetic operator is cross-breeding which is determined
by the Crossovers setting. Crossovers determines the frequency of
intermingling of features on the same string to create new structures.
Thus a setting of 1 means that two strings are crossed over at one
point; a setting of 2 means that two strings are crossed over at two
points, etc. The maximum setting for crossover frequency is 10.

As an example of cross-breeding, if Input columns A, B, C, and D, are
selected for the base neural network model; then the string

7.5 Genetic Operators 97



X = <1,0,1,1> means that only Input columns A, C, and D, are
included in this structure. If a second string, Y = <0,1,1,0>, from
another structure is cross-bred with the first string, such that X is
read first then crossed over at the mid-point to Y, then the resulting
string for a new structure would be <1,0,1,0>, representing Input
columns A and C.

Note that only the Input column string will actually be likely to see a
high frequency of crossovers as the neural network configuration and
neural network parameter strings are too short to intermingle more
than once or twice. The default setting for Crossovers is 1.

7.5.2 Mutation

The secondary genetic operator for creating new structures is
mutation. With mutation, structures and features are chosen at
random, then randomly changed to new values. The Mutation Rate
parameter sets the percentage of structures which will undergo a
mutation rather than a crossover to create the new population.

As an example of mutation, if Input columns A, B, C, and D, are
selected for the base neural network model; then the string <1,0,1,1>
means that only Input columns A, C, and D, are included in this
structure. If mutation is selected for this structure, and the third
feature is mutated, then the new string would be <1,0,0,1>,
representing Input columns A and D.

Mutations and cross-breeding are never mixed. A structure is either
cross-bred or mutated. The maximum setting for Mutation Rate is
100%. The default setting for Mutation Rate is 10%.

7.6 Fitness Criteria

98

The evaluation of each structure is based on training or testing while
comparing the best RMS Error level achieved or the least number of
epochs. There are four modes which can be set: Train Epochs, Train
Error, Test Epochs, and Test Error.

Train Error finds the structure with the least RMS Error when
training each candidate solution up to the number of epochs specified

7.6 Fitness Criteria



in the Fitness Limit; it operates on training data only. Train Epochs
finds the structure with the least epochs to achieve the RMS Error
level set in Fitness Limit; it operates on training data only.

Test Error finds the structure with the least RMS Error in the test
set data when training each candidate solution up to the number of
epochs specified in the Fitness Limit; it operates on training data and
testing data. Test Epochs finds the structure with the least epochs to
achieve the RMS Error level of the test set data as set in Fitness Limit;
it operates on training data and testing data.

The default Fitness Criteria mode is Train Error with Fitness Limit
set to 100 epochs. This will optimize RMS Error while training each
candidate solution to an epoch limit of 100.

7.7 Genetic Supervisor Tutorial

In Chapter 5, we trained a neural network to predict the possible
investment potential of a NYSE stock, Ametek. We will now use that
example to show you how to use the Genetic Supervisor.

Let's recap the example: AMETEK.XLS {Ametek} contains fundamental
stock data. The data is primarily organized on a per share basis. These
are: sales revenue per share (Sls/Sh), cash flow per share (CF/Sh),
earnings per share (Ern/Sh), dividends per share (Div/Sh), capital
spending per share (Cap$/Sh), book value per share (BV/Sh), average
price to earnings ratio for the year (Avg. P/E), relative price to
earnings ration for the year compared to the overall market (Rel P/E),
dividend yield (Div %), and the average price per share for the year
(Avg $/Sh).

First set up the example in the same way as you did previously.
To run this example:
1. Init Working Area — starting at V1
2. Set Rows — 29 through 48, 1 Row/Pattern, 1 Row/Shift
3. Add Input Columns — C through L

7.7 Genetic Supervisor Tutorial 99



100

4. Add Target Columns — N and O

5. Add Output Columns — Q and R

6. Set Mode Flag Column —T

7. Set Mode Rows — 48, Set Symbol Row

8. Set Network Size — 3 Layers, 6 Hidden Neurons

9. Set Network Parameters — Epochs per Update to 10

At this point the neural network configuration is set exactly as it was
the first time. Now we will allow Neuralyst to develop a more optimal
neural network using genetic optimization technology. Select the
Set Genetic Parameters command from the Neural menu. This
will cause the Genetic Parameters dialog box to appear.

Genetic Training Parameters

~Input Data——— [ Training Parameters - rGenetic Operators

Inclusion Rate: II].?5 Learning Rate: II].5 Crossovers: |1
Momentum: |1 Mutation Rate: Il].1
~Network Structure ;

Input Moise: II].I]3
Max Layers: |4 IR ~Fitnessz Criteria

L2 Neuron Lmt: |3|] ~Population Control i | O Train Epochs

ize: | (! Train Eror
L3 Neuron Lmt: |1 1] Eoullizes 3

() Test Epochs

! Cloged Pool
L4 Meuron Lmt: II] = (! Test Eror
- (®! Immigration
L5 Neuron Lmt: IU ! Emmigration Fitness Limit: |100

Figure 7-1 Genetic Parameters Dialog Box

The various fields have default values which are good starting points
for genetic optimization. With the exception of Pool Size, we will leave
them set to their defaults for this example, but you should review the
description of the parameters in Section 8.2.7 and experiment with
their functions. For now, change the Pool Size setting to 10. Confirm
OK to accept the settings. This will result in a message asking you to
confirm that you want to initialize the Genetic Supervisor state.
Confirm OK. The Genetic Supervisor is now ready to run.

7.7 Genetic Supervisor Tutorial



Select the Run Genetic Supervisor command from the Neural
menu. This will cause a dialog box to appear with an entry field to
limit the generation count.

Genetic Trainer

Generation Limit: Im-

Figure 7-2 Genetic Trainer Dialog Box

The Genetic Supervisor will stop at the Generation Count which
matches the setting. The default setting is Generation Count 10.
Confirm OK to accept the settings. The Genetic Supervisor will now
begin training and evaluating multiple neural network configurations
to find the one which can provide the least RMS Error for a given
number of training epochs. Note that this is only one evaluation
condition that is possible, there are three others which emphasize the
fewest training epochs for a given RMS Error and the same two
conditions but applied to the testing set rather than the training set.

The Genetic Supervisor will report the Generation Count, the
Structure Count, and the Least RMS Error or Least Epochs for the
most recent completed generation. This will continue for several
minutes until the Generation Count reaches the limit set in the
Run Genetic Supervisor dialog box. At this time, the best structure
identified in the current generation, after 10 generations of
optimization, will be reported in a status display dialog box.

7.7 Genetic Supervisor Tutorial 101



102

Best Structure in Last Generation
Selected Columns: C.D.E.F.G.H.LE.L
Humber of Layers: 3
Layer 2 Neurons: 13
Layer 3 Neurons: 0
Layer 4 Neurons: 0
Layer 5 Meurons: 0
Learning Rate: 0.951902829
Momentum: 0.857631153
Input Noize: 0011176183
BMS Error Achieved: 0.205806944
Epochs Achieved: 100

Figure 7-3 Best Structure Dialog Box

You have the option of retrieving the structure that is displayed or
not doing so. If you chose not to retrieve the structure, you could
resume the Genetic Supervisor at the stopped point by executing
Run Genetic Supervisor again and increasing the generation limit
to a higher Generation Count. This would proceed with additional
generations of genetic optimization up to the new limit. At stopping
points, you can also change the Pool Mode, Genetic Operators, or
Fitness Criteria, without forcing a reinitialization of the Genetic
Supervisor. However, changing most neural network configuration
settings or the structure definitions in the Genetic Parameters dialog
box would invalidate the optimization done to that point and require
a reinitialization.

In this case, go ahead and confirm the retrieval with Retrieve. This
will cause the structure that was shown to you to overwrite the
Neuralyst Working Area with settings that duplicate the structure.
The worksheet now contains a better optimized neural network. The
settings which define the more optimal neural network are saved, but
not the connection weights. So to try out the new neural network
configuration, train and run the network as before by performing a
Train Network command and then a Run/Predict with Network.

7.7 Genetic Supervisor Tutorial



7.8 Operating Techniques

The Neuralyst Genetic Supervisor is a powerful tool, but as mentioned
before, it can require lengthy optimization runs to achieve the best
results. There are some techniques that are worth following when
operating the Genetic Supervisor to get the most out of it.

When using a Fitness Criteria of Train Epochs or Test Epochs, which
means that epoch count is optimized in reference to a set RMS Error
level, not all neural network configurations will be able to achieve the
set RMS Error level. These neural networks will continue training
unless stopped by some other means. The external effect is that the
Genetic Supervisor becomes “stuck” on a single structure. Remember
that only the parameters specified in the Genetic Parameters dialog
box are varied by the Genetic Supervisor, the remaining parameters
that are settable in the Network Parameters and Enhanced
Parameters dialog box are effective where they make sense. In
particular, the three training cutoffs of Epoch Limit, Time Limit, and
Error Limit are effective even under the Genetic Supervisor.
Generally, it is best to set a Time Limit, with a value approximately
one and a half to two times the amount of time that a trial run takes
to achieve the set RMS level.

When using the Genetic Supervisor on a neural network model that
has relatively few Input columns with a small Pool Size setting and
an Inclusion Rate of notably less than 1, it is often possible for an
initial generation to be created where no structure has all the Input
columns specified, or where all Input columns are specified but the
other structure characteristics cause the candidate solution to be
culled. As a result, it can take many generations for cross-breeding or
mutation to bring the Input column set back up to a full count for
consideration. Under these conditions it is best to set Inclusion Rate
to 1 or almost 1 and allow mutation to eliminate columns or to increase
the Pool Size so the full Input column set is more likely to receive
immediate evaluation.

When observing the Genetic Supervisor, it often happens the reported
Least RMS Error or Least Epochswill increase in a currentgeneration
from the preceding one. These variations are not unusual and occur
because the weight sets are initialized randomly. This may result in
the best structures having slight variations in their reported results

7.8 Operating Techniques 103



104

from generation to generation even though a single structure remains
the best candidate solution.

Also, while observing the Genetic Supervisor, it often happens that
the reported Least RMS Error or Least Epochs will attain an effective
plateau after a few generations, subject to the minor variations
mentioned previously. It is possible that this means that the Genetic
Supervisor has attained an optimal solution. However, it also happens
that after attaining a plateau for many generations, a sudden
mutation can cause a marked improvement and a new, improved
performance level. There is no clear way to predict the difference. This
is very similar to biological evolution.

Generally, if the Genetic Supervisor has attained a plateau for a
number of generations, the majority of structures will have become
bred to be like the best structure. The propagation of the best
structure in this fashion will generally take fewer generations than
the set Pool Size if the Pool Mode is set to Closed Pool or Immigration.
That is, if the Pool Size is set to 10, then the majority of structures
will become similar in fewer than 10 generations. At this point, the
Genetic Supervisor will attain better results only if Immigration is set
or if there is a mutation. When this happens, it is possible to stop the
Genetic Supervisor and change the settings of the Pool Mode, Genetic
Operators or Fitness Criteria; then restart the Genetic Supervisor
with the effect of stressing and evolving the population in a different
way, with possibly beneficial results.

As a final suggestion, the Genetic Supervisor can deliver very useful
results even with short runs. This can be achieved by setting the
Genetic Supervisor to a large pool with only one or two iterations. This
is an automated way to test a random space of neural network
configurations for the best performer. If the neural network is
moderately sized, the selected neural network will often be close to an
optimal network.

7.8 Operating Techniques



Chapter 8
Neuralyst Operations Reference

8.1 Neural Network Configuration Menu

Config Menu

Init Working Area

Set Rows...

Add Input Columns
Add Target Columns
Add Output Columns
Set Mode Flag Column
Set Mode Rows...

Edit Column Lists...
Select Data Mode...
Edit Mode Lists...

Set Network Size...

Figure 8-1 Config Menu

The Config menu provides you with access to the commands
necessary to define the structure of a problem and the associated
neural network to Neuralyst. The commands are ordered in the same
sequence that you would generally proceed in defining the problem to
Neuralyst, though this is not a requirement in all situations (in
particular the various Add/Edit Column commands may be used in
any order).

8.1.1 Init Working Area

Function: Init Working Area is used to reserve the area that
Neuralyst will use for its operations.

8.1.1 Init Working Area 105



106

Usage: Touse InitWorking Area, select the cell that is at the upper
left corner of the area to be reserved and execute the command. All
cells to the right of the specified cell and all cells below the specified
cell will be included in the Working Area. It is usually convenient to
designate the Working Area starting with the first cell at the top of
the sheet and to the right of other data.

Effect: Init Working Area will first confirm the intent to overwrite
the region. If this is confirmed it will clear the region. Starting from
aclear region, it will build its Working Area by placing the Title Block,
Statistics Block, Parameter Block, Row Description Block, Column
Description Block, Network Description Block, and Network Weights
Block in this region (see Section 8.3 for a description of these data
blocks). These blocks will be initialized to default values.

Warnings: Init Working Area must be executed for a new sheet
before any other configuration operations can occur. Any data that is
in the Working Area prior to the execution of the command will be
deleted; therefore Neuralyst will always ask for confirmation prior to
executing the command. Any data that is placed in the Working Area
after the execution of the command may cause incorrect operation of
Neuralyst or be changed by Neuralyst depending on the actual
position within the Working Area. Executing Init Working Area a
second time in the same or different location will result in the old area
being ignored and the new area being set up and used.

8.1.2 Set Rows

12 Rows Selected

Number of rows per pattern: I[-
Rows to shift per pattemn: |1

Figure 8-2 Set Rows Dialog Box

Function: Set Rows is used to designate the rows that will be input
to the neural network by Neuralyst.

8.1.2 Set Rows Config Menu



Config Menu

Usage: To use Set Rows, select the rows that will be input and
execute the command. After the region is set, a dialog box will show
the number of rows contained in the selected region and will then
request the number of rows per pattern (other appropriate terms
might be instance or example) and the number of rows to shift per
pattern.

When a worksheet is modified by inserting or deleting one or more
rows so that the range of rows is no longer the same as that previously
configured for Neuralyst, then a Set Rows on the new range should
be performed.

Effect: The first and last rows in the selected region will be retained
as the lower and upper bounds, respectively, for training, testing, or
running patterns with the neural network. For example, when Rows
per Pattern is set to 3, (while Rows to Shift is retained at its default
value of 1) the window is three rows high. The window will step down
one row for each pattern, this means that there is a two row overlap
with each previous pattern.

To change the overlap, Rows to Shift may be changed. Increasing it
to 2 in the example would mean the window would step down two rows
for each pattern, creating a one row overlap with each previous
pattern. Increasing it to 3 in the example, would mean the window
would step down three rows for each pattern, resulting in no overlap
between patterns. Setting the Rows per Pattern and Rows to Shift to
equal values is how two-dimensional input patterns are defined.

Warnings: It will not matter which column or columns are in the
selected region used for Set Rows; only the row numbers will be used.
Only one contiguous region may be selected; discontinuous extended
regions will not be handled properly. Selection and execution of
Set Rows on a second region will change the row numbers to those
of the new region.

There may be blank rows in the selected region; blank rows will
always be ignored and skipped. Note that this includes the operation
of Rows per Pattern and Rows to Shift per Pattern; blank rows will
not be counted in these either.

In addition, partially blank rows or rows with non-numeric data at
the beginning or end of the selected region will be skipped. Data in

8.1.2 Set Rows 107



108

partially blank rows or rows with non-numeric data that are
interspersed with valid rows in the selected region will be treated as
0’s in the case of blanks or cause an error in the case of non-numeric
data.

8.1.3 Add Input Columns

Function: Add Input Columns is used to designate those columns
that will be used as inputs to the neural network for training, testing,
or running patterns.

Usage: Touse Add Input Columns, select one or more columns that
contain components of the input pattern and execute the command.
Add Input Columns may be repeated; each repetition will add those
columns selected to the list of previously selected columns.

Effect: The columns selected will be noted and used as components
of the input patterns to the neural network. Only those cells of the
columns selected in the range established by Set Rows will be used.

Warnings: It will not matter which rows in the column are used to
select the column; only the columns themselves will be set. The rows
used will be determined by the selection passed to Set Rows; each
column will use the same rows. All cells in the region to be used for
input patterns must contain valid numeric or symbolic values; if there
are any invalid values (other than blank rows) in the region
determined by the intersection of rows as set by Set Rows and
columns as set by Add Input Columns, then there will be an error.

8.1.4 Add Target Columns

Function: Add Target Columns is used to designate those columns
that will be used as targets (goals or known outputs) to the neural
network for training or testing input patterns.

Usage: To use Add Target Columns, select one or more columns
that contain components of the known output pattern and execute the
command. Add Target Columns may be repeated; each repetition
will add those columns selected to the list of previously selected
columns.

8.1.4 Add Target Columns Config Menu



Config Menu

Effect: The columns selected will be noted and used as components
of the target patterns for the neural network to compare with its own
outputs. Only those cells of the columns selected in the range
established by Set Rows will be used.

Warnings: It will not matter which rows in the column are used to
select the column; only the columns themselves will be set. The rows
used will be determined by the selection passed to Set Rows; each
column will use the same rows. All cells in the region to be used for
target patterns must contain valid numeric or symbolic values; if
there are any invalid values (other than blank rows) in the region
determined by the intersection of rows as set by Set Rows and
columns as set by Add Target Columns, then there will be an error.
The number of Target columns should match the number of Output
columns, otherwise there could be an error.

8.1.5 Add Output Columns

Function: Add Output Columns is used to designate those columns
that will be used as outputs for the neural network after training,
testing, or running input patterns.

Usage: To use Add Output Columns, select one or more columns
that are available to hold the output pattern and execute the
command. Add Output Columns may be repeated; each repetition
will add those columns selected to the list of previously selected
columns.

Effect: The columns selected will be noted and used as components
of the output patterns from the neural network after it processes the
input patterns. Only those cells of the columns selected in the range
established by Set Rows will be used.

Warnings: It will not matter which rows in the column are used to
select the column; only the columns themselves will be set. The rows
used will be determined by the selection passed to Set Rows; each
column will use the same rows. All cells in the region to be used for
output patterns will be overwritten by the neural network outputs; if
there are any values in the region determined by the intersection of
rows as set by Set Rows and columns as set by
Add Output Columns, then these will be overwritten. The number

8.1.5 Add Output Columns 109



110

of Target columns should match the number of Output columns,
otherwise there could be an error.

8.1.6 Set Mode Flag Column

Function: Set Mode Flag Column is used to designate the column
whose values will be used to switch Neuralyst from training mode to
testing or running mode on a pattern by pattern basis. The column
also holds special Neuralyst Mode Flags to indicate a MIN, MAX, or
SYMBOL, rows.

Usage: To use Set Mode Flag Column, select the column that
contains the flags designating whether the pattern on that row is to
be used as a training pattern, as a testing/running pattern, or special
Mode Flags, and execute the command.

Effect: The column selected will be noted and for each pattern
window, as determined by the rows selected by Set Rows and the
pattern window parameter, Rows per Pattern, Neuralyst will check
the value of the cell in the Mode Flag column on the same row as the
last row of the pattern window. If the value is TRAIN the pattern will
be used for training and if the value is TEST the pattern will be used
for testing or running. If the value is blank, thenitis treated as TRAIN.
Testing is distinguished from running only by the presence of values
on the relevant rows of the Target columns. If the value is MIN, MAX,
or SYMBOL, the pattern will be skipped for training, testing or running
purposes; but will be interpreted appropriately otherwise.

Warnings: It will not matter which rows in the column are used to
select the column; only the column itself will be set. The rows used
will be determined by the selection passed to Set Rows. Only the text
values, TRAIN, TEST, MIN, MAX, SYMBOL, or blank cells should be in the
Mode Flag Column; other values may cause an error. Only one Mode
Flag Column may be set; if another column is selected and
Set Mode Flag Column is executed, then the new column will
replace the old column. If a Mode Flag Column is not set
then both Train Network, Run/Predict with Network, and
Run Genetic Supervisor, will use all the defined rows. Only one
instance each of MIN, MAX and SYMBOL may be present in the
Mode Flag column. Additional instances may cause errors.

8.1.6 Set Mode Flag Column Config Menu



Config Menu

8.1.7 Set Mode Rows

 GotMode Fowe

:_ - Get Migy Scale Flow
' St Moy Scolo Row
# St Spmbol Row

Figure 8-3 Set Mode Rows Dialog Box

Function: Set Mode Rows is used to designate and optionally
initialize the rows which will be identified with special Mode Flags
which will indicate to Neuralyst that those rows have special
functions.

Usage: To use Set Mode Rows, select the row that contains the
Mode Flags designating whether the data on that row is to be used as
a MIN, MAX, or SYMBOL, row and execute the command.

Effect: The row selected will be identified with a Mode Flag of MIN,
MAX, or SYMBOL, in accordance with the type selected from the dialog
box. Neuralyst will then treat the information set in those rows in
accordance with the Mode Flag set. Each column of a MIN row can be
initialized at the time of the command automatically with the scanned
minimum numeric values, or later by using Edit Mode L.ists with
scanned or user defined numeric or symbolic values, which will be
taken by Neuralyst to be the minimum value defined value for that
row. Each column of a MAX row can be initialized at the time of the
command automatically with the scanned maximum numeric values,
or later by using Edit Mode Lists with scanned or user defined
numeric or symbolic values, which will be taken by Neuralyst to be
the maximum defined value for that row, subject to additional
headroom added by Scaling Margin. Each column of a SYMBOL row
can be filled in later by using Edit Mode Lists with a Symbol List
defining the valid Symbols for that row.

Warnings: It will not matter which columns in the row are used to
select the row; the row will be set with the selected Mode Flag and the
column used to identify the row will be determined by the column

8.1.7 Set Mode Rows 111


Shal Farley
 


112

selection passed to Set Mode Flag Column. Only one row can be
selected of each Mode Flag type. If a mode row has been previously
set of the type selected in the dialog box, then Set Mode Rows will
overwrite the previous Mode Flag. The command will automatically
initialize the Min or Max fields with the respective Min or Max
numeric values from the currently defined Input or Target columns,
if feasible and confirmed. Only the Mode Flag values, MIN, MAX, or
symMmBoL, will be entered by Set Mode Rows. The only other Mode
Flag values that are legal for the Mode Flag Column are TRAIN, TEST
or blank; other values may cause an error. Before executing a
Set Mode Rows command, a Mode Flag Column must have been set
first with Set Mode Flag Column.

8.1.8 Edit Column Lists

Input Columns: '|E..IIJI.E_ ;
]!ﬂltEdl-nr s :
© Dytput Cokumns. [
:_:mmtﬂmﬁ__-'f_ ._

Figure.S-.A:. Edit Column Lists Diaiog Box

Function: Edit Column Lists allows you to make additions or
deletions to existing settings for Input, Target, Output and Mode Flag
columns. Note that this is the only way to delete columns from the
lists.

Usage: To use Edit Column Lists execute the command. A dialog
box will appear listing the columns of each type. These lists may be
edited with mouse and keyboard operations as in any Windows data
entry box. The format for column lists is a series of one or two letter
column names separated by spaces or commas. When complete you
confirm OK to accept the changes or Cancel to abort the changes.

When a worksheet is modified by inserting or deleting a column so
that some of the columns previously configured for Neuralyst no
longer have the same column names, then Edit Column Lists may

8.1.8 Edit Column Lists Config Menu


Shal Farley
 


Config Menu

be used to revise the column lists to reflect these changes. Without
Edit Column Lists, it would be necessary to perform an
Init Working Area and rebuild the configuration.

Effect: When the command is executed, Neuralyst will put up the
Edit Column Lists Dialog Box listing the column information entered
to that point by previous Add Column commands. Adding new
columns to any list will not be treated any differently than if the
column was added by an Add Column command. Deleting a column
already on the list will cause Neuralyst to “forget” that the column
was ever entered. Once you have completed editing and confirmed the
changes with OK, Neuralyst will enter the revised data into its
column lists.

Warnings: All considerations listed for the various Add Column
commands apply for this method of column deletion or addition. In
addition, changing the column lists, other than the Mode Flag
Column, will require the Set Network Size command to be
re-executed for the new set of columns, thus forgetting any learning
that has been done. In this case Neuralyst will first ask you to confirm
your intentions.

8.1.9 Select Data Mode

f‘lmsmnmx :

(" Initial Sehect Tegling
[ Handom Select Data E“" -
[ futo Select Data
Lo {“nn-:cmna.

-:

Figure 8-5 Data Classification D'ialog Box

Function: Select Data Mode is used to automate the classification of
data between training data and testing data.

Usage: To use Select Data Mode, make sure that all rows and
columns are first defined, then execute the command. A dialog box
will appear asking for one of five options, Initial Select Training,

8.1.9 Select Data Mode 113



114

Initial Select Testing, Random Select Data, Auto Select Data, and
Invert Current Data. Select the desired option and confirm with OK.
The operation can be aborted with Cancel.

Effect: When one of the five options: Initial Select Training, Initial
Select Testing, Random Select Data, Auto Select Data, and Invert
Current Data, is selected, the Mode Flag column for each row
associated with a pattern window will be set to TRAIN or TEST,
corresponding to the classification of the data in the pattern window
associated with that row as training data or testing data. A
percent setting is associated with Initial Select Training,
Initial Select Testing, Random Select Data, and Auto Select Data.

Initial Select Training will set the initial sequence of Mode Flag
column entries to TRAIN, indicating training, up to the percentage
threshold. The remaining entries will be set to TEST. For example, if
there are 50 rows of training data and the setting is 80%, then the
first 40 rows will be defined as training data, with the remainder
defined as testing data. Initial Select Testing performs a similar
function, but the initial rows are set to TEST, corresponding to testing
data, and the remaining rows are set to TRAIN.

Random Select Data will randomly assign rows to be TRAIN or TEST,
with the percent setting governing the approximate percentage of
data to be set as training data. For example, a setting of 90% will
generate a random classification with approximately 90% of the data
classified as training data.

Auto Select Data will use a heuristic method to assign rows to be TRAIN
or TEST, with the percent setting governing the approximate
percentage of data to be set as training data. The method will scan for
those rows which contain extremes or large variations of values in
each column and include additional rows with data that may be
suitable as possible, depending on the percent setting.

Invert Current Mode will scan any pre-existing classifications and
invert them. For example, a sequence of 50 rows that had the first 40
set to TRAIN and the last ten set to TEST, would be inverted so that the
first 40 were set to TEST and the last ten were set to TRAIN. If the Mode
Flag column entry for a row is not filled in, then the setting will become
TEST since a non-existent entry corresponds to an implied TRAIN.

8.1.9 Select Data Mode Config Menu



Config Menu

Warnings: Select Data Mode offers some of the more useful
operations on the classification of data between training and testing.
However, its options may not always be suitable. When none of the
Select Data Mode options are suitable or desirable, it is always
possible to enter the classification directly in the Mode Flag column.

Auto Select Data is currently implemented as an Excel macro
sequence and could take large amounts of time to classify larger data
sets.

8.1.10 Edit Mode Lists

Edit Mode List for Column: G
~Edit Symbol List
Symbol List: [FIZZLE.BOOM!!

~Edit Min/Max Limits

Min Limit: I @ Auto Set
Max Limit: I ) User Set

Figure 8-6 Edit Mode Lists Dialog Box

Function: Edit Mode Lists is used to enter or change the Symbol
List, Min limit, or Max limit, for an Input or Target column. The
Symbol List, Min limit, or Max limit, entered for a Target column is
applied to an Output column.

Usage: To use Edit Mode L.ists, select the column that is to have a
Symbol List, Min limit, or Max limit, created or updated and execute
the command. A dialog box will appear with fields for a Symbol List,
Min limit, or Max limit, present or grayed out depending on the
settings of the MIN, MAX, or SYMBOL, mode rows. Each field, if present,
is clear if the the field has not been defined previously, or is initialized
to the old settings if they have been defined previously. Enter or edit
the settings in numeric or symbolic form, while maintaining
consistency between the fields. The Symbol List, Min limit, or Max
limit, can be accepted with OK or aborted with Cancel.

8.1.10 Edit Mode Lists 115



Effect: If symbolic data is entered or edited in the Symbol List field
and the User Set option is enabled, then the Symbol List and the
symbols defined for Min and Max, if Min and Max fields are present,
are entered in the respective SYMBOL, MIN, and MAX, fields of the
column selected. If symbolic data is entered or edited in the Symbol
List field and the Auto Set option is enabled, then the Symbol List,
and the first symbol and last symbol of the Symbol List, if Min and
Max fields are present, are entered in the respective SYMBOL, MIN,
and MAX, fields of the column selected. If the Symbol List is left blank
and the User Set option is enabled, then the Min and Max values, if
Min and Max fields are present, are entered in the respective MIN and
MAX fields of the column selected. If the Symbol List is left blank and
the Auto Set option is enabled, then the Min and Max values scanned
from the designated row range of the designate column, if Min and
Max fields are present, are entered in the respective MIN and MAX
fields of the column selected. Any entries in the Min and Max fields,
whether numeric or symbolic, are ignored in Auto Set mode.

The Symbols in the Symbol List define the valid symbolic values to be
used as Inputs, Targets or Outputs, depending on the column type.
The Symbols in the Symbol List will be assigned values that are
increasing in proportion to their position in the list. Thus for the list
<RED, GREEN, BLUE>, RED Will be assigned the lowest value, GREEN
will be assigned an intermediate value, and BLUE will be assigned the
highest value. The same Symbol in different Symbol Lists are treated
independently and are not assigned the same value. Thus the two
lists, <RED, GREEN, BLUE> and <GREEN, BLUE, VIOLET>, have common
Symbols, GREEN and BLUE, but they are not equal between
Symbol Lists.

Warnings: It will not matter which rows in the column are used to
select the column; only the fields defined by the intersection of the
selected column and the defined Mode Flag rows will be set. The Mode
Flag column and the Mode Flag rows must have been set previously
with the Set Mode Flag Column and Set Mode Rows commands.
The entries must be consistent, that is all symbolic or all numeric, not
mixed symbolic and numeric.

The symbols of a Symbol List can be any alphanumeric combination
separated by commas. Leading white space, space or tab, in a symbol
is ignored, but trailing white space is distinctive. The symbols defined

116 8.1.10 Edit Mode Lists Config Menu



Config Menu

in the Min and Max fields, if present, must match one of the defined
Symbols and the Min symbol must precede the Max symbol in the
Symbol List. Most neural networks are not able to accurately resolve
more than 5-10 Symbols for an Input or Target. There is a limit of 255
characters in a Symbol List.

8.1.11 Set Network Size

Metwork Size

Mumber of Layers: I_

Figure 8-7 Network Size Dialog Box

Function: Set Network Size is used to define the structure of the
neural network used in the problem, in particular the number of
hidden layers and the number of neurons per layer.

Usage: To use Set Network Size, make sure that all rows and
columns are first defined, then execute the command. A dialog box
will appear asking for the Number of Layers in the neural network.
There is a default minimum of 2 layers, the input and output layers.
To add one or more hidden layers, you would change the entry and
confirm OK. Another dialog box will then appear allowing you to
define the number of neurons in each hidden layer which can be
confirmed with OK. Changes can be aborted at either step with
Cancel.

8.1.11 Set Network Size 117



6 Layer Network
Layer 1: 3
Layer 2:
Layer 3: IB
Layer 4: |4
Layer 5: |2
Layer B: 1

Figure 8-8 Network Description Dialog Box

Effect: When the first dialog box, Neural Network Configuration, is
presented, you can specify the total number of layers in the neural
network. Since the input and output layers are required layers, the
number entered is 2 plus the number of desired hidden layers; for
example, 4 would specify the default layers plus 2 hidden layers. The
Network Description Dialog Box will then allow the specification of
neurons for each layer. The input and output layer neurons are fixed
by the number of Input columns and Output columns specified
previously. Each hidden layer must have at least one neuron, but the
upper limit is defined by a combination of memory availability and
processing time you are willing to devote to the problem. Practical
experience suggests using a range from a number midway between
the preceding and succeeding layers to double the number of neurons
in the preceding layer. For example, in a 3 layer network with 12
inputs and 2 outputs, a workable range is from 6 to 24 neurons for the
one hidden layer. Once the network configuration has been confirmed,
Neuralyst will build the neural network and initialize the starting
weights for the neural network.

Warnings: Set Network Size is usually the last configuration step
performed; in particular all columns must be defined before it can be
executed. Set Network Size must also be executed any time there is
a change in the number of columns in any column lists. The network
configuration may be changed through another Set Network Size at
any time, but when this is done, the previous weights, representing
any learning that has taken place to that point, will be overwritten

118 8.1.11 Set Network Size Config Menu



and so forgotten. In that situation, Neuralyst will warn you that
learning will be forgotten, allowing you to confirm your intentions.

8.2 Neural Network Operations Menu

Neural Menu

Reload Network “1

Train Network
Bun{Predict with Network
Run Genetic Supervisor...

“
°r
‘g
Set Network Parameters... “p

Set Enhanced Parameters...
Set Genetic Parameters...

Plot Training Error
Reset Weights...
Histogram Weights
Unpack Weights

Figure 8-9 Neural Menu

The Neural menu provides you with access to the commands
necessary to control the operation of Neuralyst once a problem
structure and corresponding neural network have been defined.

8.2.1 Reload Network

Function: Reload Network allows saved Neuralyst worksheets to
be reloaded. It also allows switching between two or more Neuralyst
worksheets that may be open at the same time.

Usage: Open a Neuralyst worksheet or bring an opened Neuralyst
worksheet to the front and make it the active worksheet, then execute
Reload Network. The worksheet will now be ready to run Neuralyst.

Effect: Reload Network will cause the configuration information
and network weight values saved in the Working Area of a Neuralyst
worksheet to be loaded. Once a Neuralyst worksheet is loaded the
configuration may be changed or the neural network can be trained,
tested or run.

8.2.1 Reload Network 119



120

Warnings: Neuralyst remembers which worksheet was last loaded
and will require that worksheet be the active worksheet when it runs;
this helps prevent mistakes and confusion when multiple Neuralyst
worksheets are active. If you are not sure which worksheet is active
or if you are not sure that a change you have made to the network
configuration has taken effect, it doesn't hurt to do a
Reload Network. If you change any data in the Problem Definition
Area, even if the network configuration has not changed, a
Reload Network should be done since Neuralyst keeps a copy of all
data and needs to be informed so it can refresh its copy.

8.2.2 Train Network

Function: Train Network causes Neuralyst to use the set of defined
training patterns as inputs to the neural network, backpropagating
the resulting errors (differences between actual outputs and targets)
to adjust the network weights.

Usage: To use Train Network, once the pattern and network
configurations have been defined with the Config menu or a saved
network has been reloaded, execute the command. Once training is
started, it may be halted and Neuralyst returned to command mode
by using the Esc {Esc or cmd-.} key.

Effect: Train Network will cause Neuralyst to sequence through
the set of training patterns by shifting the defined pattern window
through the defined data. As the pattern window is shifted, Neuralyst
will submit the pattern to the neural network for training if the Mode
Flag is TRAIN for that pattern window. The sequence will recycle to
the beginning of the defined data once the end of the defined data is
reached. Each complete pass through the data is called a training
epoch. After the number of epochs specified in the Epochs per Update
of the Set Network Parameters command, the Statistics Block is
updated.

This process will continue until you cause it to halt by typing the Esc
{Esc or cmd-.} key, until the neural network achieves 100% output
accuracy with respect to the defined Training Tolerance, or reaches
the Epoch Limit specified with the Set Network Parameters
command.

8.2.2 Train Network Neural Menu



Warnings: Once training begins, the network weights will be
modified from whatever values were saved previously. The Output
columns will only be valid for those rows that correspond to TRAIN
entries in the Mode Flag column or for all rows if no Mode Flag Column
has been set.

8.2.3 Run/Predict with Network

Function: Run/Predict with Network causes Neuralyst to use the
set of defined testing or running patterns as inputs to the neural
network. No backpropagation takes place so the network weights are
not modified.

Usage: To use Run/Predict with Network, once the pattern and
network configurations have been defined with the Config menu or
a saved network has been reloaded, execute the command. Testing or
running will proceed through the end of the defined data.

Effect: Run/Predict with Network will cause Neuralyst to
sequence through the set of testing/running patterns by stepping the
defined pattern window through the defined data. As each pattern
window is stepped, Neuralyst will submit the pattern to the neural
network for testing or running if the Mode Flag is TEST for that pattern
window. The sequence will stop once the end of the defined data is
reached. For testing data, the output accuracy with respect to the
defined Testing Tolerance is reported in the Statistics Block. For
running data (no comparison to targets), the Statistics Block will
change but the statistics are not meaningful.

Warnings: Testing or running does not modify the network weights.
The Output columns will only be valid for those rows that correspond
to TEST entries in the Mode Flag column or for all rows if there is no
Mode Flag Column set.

Neural Menu 8.2.3 Run/Predict with Network 121



122

8.2.4 Run Genetic Supervisor

Genetic Trainer

Generation Limit: Im-

Figure 8-10 Genetic Trainer Dialog Box

Function: Run Genetic Supervisor causes Neuralyst to use
the parameters subject to variation as defined in
Set Genetic Parameters combined with the definition of the neural
network model and iterate through a selection of candidate solutions
to identify an optimal neural network.

Usage: To use Run Genetic Supervisor, first perform all the steps
necessary to define a neural network to the stage ready for training;
then select the desired parameters to control the genetic optimization
process in Set Genetic Parameters; finally select
Run Genetic Supervisor in the Neural menu and execute the
command. A dialog box will appear allowing the specification of the
number of generations to iterate for the genetic optimization process.
Enter the number of desired generations and start the process with
OK or abort with Cancel. At the conclusion of the desired number of
generations, the best candidate solution will be reported and it may
be retrieved to overwrite the existing neural network model by
accepting it with Retrieve or rejecting it with Cancel.

8.2.4 Run Genetic Supervisor Neural Menu



Neural Menu

Best Structure in Last Generation
Selected Columns: C.D.E.F.GH.ILEL
Humber of Layers: 3
Layer 2 Neurons: 13
Layer 3 Neurons: 0
Layer 4 Neurons: 0
Layer 5 Neurons: 0
Learning Rate: 0.951902829
Momentum: 0.857631153
Input Noise: 0011176183
RMS Error Achieved: 0.205806944
Epochs Achieved: 100

Figure 8-11 Best Structure

Effect: Run Genetic Supervisor will cause Neuralyst to make a
copy of the Input and Target data. It will then create a population
of structures according to the parameters set in
Set Genetic Parameters and evaluate them against the Fitness
Criteria and Fitness Limit set. The population will be evolved over
the number of generations selected. The current generation, current
structure, and best fitness values for the current generation are
reported regularly. At the designated generation, the best candidate
solution will be reported and it may be used to replace the current
neural network model.

Warnings: Run Genetic Supervisor makes a copy of all Input and
Target data as well as keeping its own data structures. As a result,
using the Genetic Supervisor will approximately double the amount
of memory that is normally used by Neuralyst. The Genetic
Supervisor has to keep track of both the original neural network model
and numerous variants; as a consequence there are many operations
that can be performed which will invalidate its copy of the various
states it is attempting to track, resulting in a need to reinitialize
its state. Its state will always be valid as long as only
Set Genetic Parameter settings for Population Mode, Genetic
Operators, or Fitness Criteria are adjusted; most other commands
in the Config menu, Set Network Parameters, or
Set Enhanced Parameters will result in a reinitialization being

8.2.4 Run Genetic Supervisor 123



124

needed. The genetic optimization process will stop because it is
interrupted or because it reaches the designated generation. A
repetition of the Run Genetic Supervisor command will allow the
genetic optimization process to continue from its last point if it was
interrupted or to a higher generation if the generation setting is
increased; so long as only the previously indicated acceptable
operations are performed between Run Genetic Supervisor
commands. The Genetic Supervisor will overwrite the original neural
network model if the best candidate solution is retrieved; if the
original neural network model is still desired, a copy of the worksheet
should be made and saved before Run Genetic Supervisor is
executed.

8.2.5 Set Network Parameters

Metwork Parameters

Learning rate: I_ Training Tolerance: ||]_1
Momentum: Il]_EI Testing Tolerance: Il]_3
Input Moige: ||] Epochs per Update: |1

"Tlaining Cutoffs [D=none]

Epoch Lmt: ||] Time Lmt: ||] Error Lmt: ||]

Figure 8-12 Network Parameters Dialog Box

Function: Set Network Parameters allows various parameters
affecting the network training, testing, and computation process to be
adjusted.

Usage: To use Set Network Parameters, execute the command. A
dialog box, Network Parameters, showing the current values of nine
control parameters, Learning Rate, Momentum, Input Noise,
Training Tolerance, Testing Tolerance, Epochs per Update, Epoch
Limit, Time Limit, and Error Limit, will be displayed. These values
may be changed and confirmed with OK or aborted with Cancel.

8.2.5 Set Network Parameters Neural Menu



Neural Menu

Effect: Set Network Parameters will allow you to change one or
more of nine parameters, Learning Rate, Momentum, Input Noise,
Training Tolerance, Testing Tolerance, Epochs per Update, Epoch
Limit, Time Limit, and Error Limit, that affect the training process.

Learning Rate determines the magnitude of the correction term
applied to adjust each neuron’s weights when training. Learning Rate
corresponds to the variable LR in Equation 3-3. Learning Rate must
be positive, is adjusted in the range of 0 to 1 and has a default value
of 1. Large values of Learning Rate will cause the network to train
more quickly, but too large a value may cause the training to be
unstable and no learning will occur.

Momentum determines the “lifetime” of a correction term as the
training process takes place. Momentum corresponds to the
variable M in Equation 3-6. Momentum must be greater than or equal
to O but less than 1 and has a default of 0.9. Values of Momentum
closer to 1 will cause the neural network to retain more of the impact
of previous corrections to the current corrections. Values of
Momentum close to 0 will allow mostly or only the current corrective
term to have an effect. Momentum helps to smooth out the training
process so that no single aberrant instance can force learning in an
undesirable direction.

The Input Noise parameter enables the addition of noise during the
training process. Input Noise has a value of 0 as a default, meaning
no noise is added. Input Noise should be set between 0 and 1, meaning
0% to 100% of the input range will be set as a noise range. For example,
if the input ranges from O to 15 and the Input Noise is set to 0.1, then
random values ranging from 0 to 1.5, 10% of 15, will be added to or
subtracted from each input value. Input Noise is only in effect when
training.

The Training Tolerance and Testing Tolerance parameters define the
percentage error allowed in comparing the neural network output to
the target value to be scored as “Right” during training and testing,
respectively. The Tolerance parameters should be between 0 and 1,
with Training Tolerance having 0.1, or 10%, as a default and Testing
Tolerance having 0.3, or 30%, as a default. The Tolerance parameters
are defined as a percentage of the range between the highest and
lowest values in the Target columns. For example, if values in the

8.2.5 Set Network Parameters 1 2 5



126

Target columns ranged from 100 to 300, a Tolerance of 0.2,
corresponding to 20%, would allow errors of 20% of 200 (300 minus
100) or 40. The Training Tolerance value has no effect on the learning
algorithm. However, when Neuralyst finds 100% Right, as defined by
Training Tolerance, it will automatically stop training. The Testing
Tolerance value is used only for scoring during testing or running.

The Epochs per Update parameter allows you to control the number
of epochs between updates of the neural network results which are
displayed in the Network Run Statistics block in the worksheet.
Epochs per Update has a default value of 1. However larger values
will mean less frequent communication between the neural network
and the worksheet, reducing overall training time.

The Epoch Limit parameter sets a maximum number of training
epochs the neural network will undergo in those situations where you
wish to control the number of training epochs rather than setting a
Training Tolerance. Epoch Limit has a default value of 0, which means
that there is no limit set.

The Time Limit parameter sets a maximum number of hours (enter
minutes as a decimal fraction of an hour, for example 0.25 would be
¥4 hour or 15 minutes) to continue training. Time Limit has a default
value of 0 which means that there is no limit set.

The Error Limit parameter sets a maximum increase allowed, in the
RMS Error values of the training data or the testing data, from the
lowest achieved value of either. Under normal circumstances, a neural
network that is training properly will steadily decrease the RMS
Errors of each set of data. However, if the neural network exceeds its
capacity or starts experiencing some effects of overtraining, some
epochs may increase the RMS Error of either or both sets of data.
Setting an Error Limit value will stop the training process if the RMS
Error of either set increases, over any number of epochs, more than
the amount set. Error Limit has a default value of 0 which means that
there is no limit set.

When more than one of Epoch Limit, Time Limit, or Error Limit, is
set, whichever limit is reached first will terminate the training
process. When no limit is set or if limits are set but the limit condition
is never reached, the normal termination condition occurs when the

8.2.5 Set Network Parameters Neural Menu



Neural Menu

neural network outputs meet the Training Tolerance criteria for all
training data.

Warnings: It is important to observe the limitations on the range of
parameter values for each parameter, though Neuralyst will check for
valid values. It is possible to set Learning Rate, Momentum, and
Input Noise parameters to values that cause little or no learning to
take place; you should observe the change in RMS Error to be sure
that it is being reduced at a satisfactory rate.

The time measured in the Time Limit parameter is actual neural
network computation time — not wall-clock or waiting time. Thus
parameter settings, for example low values of Epochs per Update,
which result in heavy I/0, without computation, will appear to run for
longer than the set Time Limit.

The RMS Error of the testing data is evaluated every training epoch
if Error Limit is set to non-zero values. To skip this evaluation cost,
particularly with large neural networks that take longer to train, set
Error Limit to zero. With a zero setting, testing data will not be
evaluated, saving substantial processing time. However, this also
means that the RMS Error plot of the testing data will not be available
in the Plot Training Error command.

8.2.6 Set Enhanced Parameters

Enhanced Parameters

- Calculation Method

~Activation Function

() Aug. Ratio (® Fixed Point
() Gaussian () Floating Point
) Hyperbolic )

. Gain: |1
() Linear ~Learning Rate
® Sigmoid :
O Step [ Adaptive

~Connection Weights

[” Force Zero Lh:ll]—

- Scaling Margin

Margin: II].1

Figure 8-13 Enhanced Parameters Dialog Box

Function: Set Enhanced Parameters allows several parameters

127

8.2.6 Set Enhanced Parameters



128

controlling special functions and modes, that can modify the behavior
of the neural network, to be selected.

Usage: To use Set Enhanced Parameters, execute the command.
A dialog box, Enhanced Parameters, showing the current values of
five parameters, Function, Function Gain, Force Zero, Zero
Threshold, and Adaptive Learning Rate, will be displayed. These
values may be changed and confirmed with OK or aborted with
Cancel.

Effect: Set Enhanced Parameters will allow you to change one or
more of five parameters, Function, Function Gain, Force Zero,
Zero Threshold, and Adaptive Learning Rate, that change the
behavior of the neural network.

The Function parameter allows a change of the neuron activation
function described in Section 3.3 and Section 6.6. The functions that
are available are: Gaussian, Linear, Sigmoid, Step, Hyperbolic and
Augmented Ratio. The Gaussian function is a smooth, differentiable
function which transforms values within a range close to O to +1, very
large negative or positive values to 0, and transforms intermediate
values with varying proportion. The Linear function provides a
continuous response multiplying input values by a constant scaling
factor until the limits of O or +1 are reached. The Sigmoid function is
also a smooth, differentiable function, which forces large negative or
large positive values to 0 or +1, respectively, but transforms
intermediate values with varying proportion. The Step function is a
sharp switching function, all negative inputs are forced to 0 and all
positive inputs are forced to +1. The Hyperbolic function is another
smooth, differentiable function, which forces large negative or large
positive values to -1 or +1, respectively, but transforms intermediate
values with varying proportion. The Hyperbolic function is actually
the Hyperbolic Tangent function and is very similar to the Sigmoid
function, except it is negative-going. The Augmented Ratio function
is a smooth, differentiable function which transforms values within a
range close to 0 to O, very large negative or positive values to 1, and
transforms intermediate values with varying proportion. The
Augmented Ratio function is similar to the Gaussian function, but
inverted. Thus selecting different neuron functions can significantly
change the behavior of the neuron.

8.2.6 Set Enhanced Parameters Neural Menu



Neural Menu

The Function Gain parameter allows a change in the scaling or width
of the selected Function. Increasing Function Gain will narrow the
central region in the Gaussian function or steepen the slope of the
Linear function and the Sigmoid function. Decreasing the
Function Gain, correspondingly, will broaden the central region in the
Gaussian Function or make the slope of the Linear or Sigmoid
functions shallower. With a Function Gain setting of 1, all three
functions will cover the normal input range of the neural network
smoothly. The Function Gain applies to all of the Activation Functions
except the Step function.

The Force Zero parameter enables a special mode which scans the
weights after every training epoch and sets those weights which are
close to 0 to be 0. The Zero Threshold parameter selects the threshold
below which weight values are set to 0. Thus, a Zero Threshold value
of 0.01 with Force Zero enabled will cause a weight value of 0.009 to
be made to be 0, while a value of 0.15 will be left unchanged.

The Calculation Method parameter allows a selection of Fixed Point
calculation or Floating Point calculation. Fixed Point mode is a very
fast and memory efficient technique, allowing speeds up to 2-3x a
computer equipped with a math co-processor using Floating Point
calculations. It is inherently less precise, but is satisfactory for the
majority of neural network problems that require precision to only 2-3
places. Floating Point mode is more precise and has higher resolution,
but requires a math co-processor — not present on many 386, 486SX,
486SL, 68030, and 68LC040 processors — more memory, and more
processing time. Fixed Point mode was the native mode of earlier
versions of Neuralyst; but now either mode can be selected depending
on the circumstances.

The Adaptive Learning Rate parameter enables a special mode which
evaluates the RMS Error after every training epoch and causes a
revision of the Learning Rate for the next training epoch. If the RMS
Error is high, then a high Learning Rate will be set, as the RMS Error
is reduced, the Learning Rate will be reduced correspondingly. The
net effect is to speed up the training process when the neural network
is far away from the correct weights, but to slow it down as it gets
closer.

8.2.6 Set Enhanced Parameters 129



130

The Scaling Margin parameter adds additional headroom, as a
percentage of range, to the rescaling computations used by Neuralyst
in preparing data for the neural network or interpreting data from
the neural network. All Input, Target, and Output data actually
processed by the neural network must be in the range 0 to 1. As a
consequence, all data presented or interpreted is rescaled from the
actual worksheet values to values in the range of O to 1. Setting
Scaling Margin above 0, increases the amount of headroom or margin,
decreasing the range onto which an Input, Target, or Output, is
mapped. As an example, if the Scaling Margin is set to 0.1, or 10%,
then 10% margin is allowed and split between the high end and the
low end of the range, resulting in a mapping to the range 0.05 to 0.95
rather than 0 to 1. This margin can facilitate precision in problems
that have continuously variable data or that may exceed the current
values in the future by a small amount. Scaling Margin modifies the
Min or Max limits that may be set for an input or target by the
designated amount.

The options of Input Noise, Force Zero, and Adaptive Learning Rate
will typically increase the total number of training epochs it takes to
achieve a successfully trained neural network over a “no-frills”
approach. However, when used judiciously, the quality of training -
and the corresponding quality of predictions — of the neural network
can be notably improved. Fixed Point calculation mode generally
provides the fastest training; however, for continuously variable
inputs or outputs requiring high resolution, Floating Point calculation
mode can be more precise. In addition, on high performance Pentiums
or PowerPCs, Floating Point approaches Fixed Point speed. Scaling
Margin is another control which is useful for problems that have
continuously variable inputs or outputs to allow higher precision.

Warnings: Selecting neuron activation functions aside from the
Sigmoid will typically change the behavior of the neural network
significantly. The Hyperbolic function is probably the most useful
after the Sigmoid. However, the Hyperbolic function is only effective
in Floating Point calculation mode. The Step function has limited
utility and is particularly difficult to train and has been included
mostly for experimental purposes for readers interested in duplicating
the work of early researchers on neural networks. The Linear,

8.2.6 Set Enhanced Parameters Neural Menu



Neural Menu

Gaussian, and Augmented Ratio functions may or may not train well,
depending on the characteristics of the training data.

While there are no limits on the settings of the Function Gain
parameter or the Zero Threshold parameter, extreme values will
prevent training. Typically values of Function Gain should not exceed
the range 1/10 to 10 and the Zero Threshold parameter should not
exceed a level of 0.5.

Selecting Force Zero and Adaptive Learning Rate (as well as
Input Noise in the Set Network Parameters command) will
typically increase the total number of training epochs it takes to
achieve a successfully trained neural network over a “no-frills”
approach.

Setting Scaling Margin to allow headroom for future values that
exceed the current data range is a marginal practice. Since, in
principle, the neural network has not been trained on data outside
the current range, it cannot be expected to accurately predict data
outside the current range, even with headroom. In practice, it can be
effective for certain neural network models.

8.2.7 Set Genetic Parameters

Genelic Training Parameters

~Input Data—— [ Traiming Parameters ~Genetic Operators

Inclusion Rate: II]_?'5 Learning Rate: II]_5 Crozsovers: |1
Momentum: |1 Mutation Rate: Il].1

~Metwork Structure

Input Noize: 0.03
Max Layers: I“ P = I ~Fitness Criteria
L2 Neuron Lmt: |3l] ~Population Control i | C Train Epochs
) Pool Size: |3 @ Train Eror
L3 Neuron Lmt: |1l] o O Test Epochs
Clozed Pool
L4 Neuron Lmt: ID & O Test Error
-~ (= Immigration
L5 Neuron Lmt: IU ' Emmigration Fitness Limit: |1I]I]

Ganco

Figure 8-14 Genetic Parameters Dialog Box

Function: Set Genetic Parameters allows several parameters

8.2.7 Set Genetic Parameters 131



132

controlling the creation of structure populations, the manner in which
they are evolved, and the way they are evaluated, to be selected.

Usage: To use Set Genetic Parameters, execute the command. A
dialog box, Genetic Parameters, showing the current values of the 15
parameters, Inclusion Rate, Max Layers, four Layer n Neuron Limits,
Learning Rate, Momentum, Input Noise, Pool Size, Pool Mode,
Crossovers, Mutation Rate, Fitness Criteria, and Fitness Limit, will
be displayed. These values may be changed and confirmed with OK
or aborted with Cancel.

Effect: Set Genetic Parameters will allow you to change one or
more of the fifteen parameters, Inclusion Rate, Max Layers, four
Layer n Neuron Limits, Learning Rate, Momentum, Input Noise, Pool
Size, Pool Mode, Crossovers, Mutation Rate, Fitness Criteria, and
Fitness Limit, that bound the limits of the genetic optimization
process and change the behavior of the Genetic Supervisor.

The Input column Inclusion Rate controls the average rate of Input
column inclusion in structure initialization. The user may select a
nominal percentage from 1 to 100% which represents the average rate
of inclusion. If the user wants to force all Input columns to be included,
then the user can set 100%. The default setting is 75%.

The first and last layer of each neural network is automatically
determined by the number of inputs and outputs defined for the
original neural network model. Within those constraints, the
optimized neural network can have from two to six layers and a wide
range of variations in number of neurons per layer. The user can
constrain the maximum number of layers and the maximum number
of neurons per hidden layer. An implicit rule is that if a lower hidden
layer is zero, then higher hidden layers must be zero. The default
maximum settings are 4 layers, an input layer, 2 hidden layers, and
an output layer; with 30 neurons in the first hidden layer and 10
neurons in the second hidden layer.

There are three network parameters which can be optimized by the
Genetic Supervisor: Learning Rate, Momentum, and Input Noise.
Learning Rate and Momentum can vary from almost O to 1, while the
Input Noise can vary from 0 to 0.1. The user can constrain the
minimum value of Learning Rate, the maximum value of Momentum,
and the maximum value of Input Noise. The default values are a

8.2.7 Set Genetic Parameters Neural Menu



Neural Menu

minimum of 0.5 for Learning Rate, a maximum of 1 for Momentum,
and a maximum of 0.03 for Input Noise.

There are two controls which determine the management of
populations. The first is a control which sets the total population size.
Changing this sets the number of structures initialized or evaluated
in each generation. The second is a control which chooses among the
three modes Closed Pool, Immigration, or Emigration. With
Closed Pool set, then the initial population pool will only be cross-bred
or mutated with no new structures initialized. With Immigration set,
the population pool will be evolved and every generation new
structures will replace the weakest structures of the existing pool.
With Emigration set, the population pool will be evolved and every
generation the best structure will be emigrated to an entirely new
population. The default settings are for population size to be 3 and
Immigration to be enabled.

There are two settings the user can control to determine the
mechanism for genetic optimization. These settings are Crossovers
and Mutation Rate. Cross-breeding is controlled by the Crossovers
setting, which determines the amount of intermingling of features on
the same string to create new structures. A setting of 1 means that
two strings are crossed over at one point; a setting of 2 means that
two strings are crossed over at two points. The maximum setting for
Crossovers is 10 and the default is 1. The secondary mechanism for
creating new structures is mutation. With mutation, structures are
chosen at random, then features are randomly changed to new values.
The mutation rate sets the percentage of structures which will
undergo a mutation rather than a cross-breeding to create the new
population. The maximum setting for mutation is 100%. Mutation is
always in place of cross-breeding; the two never occur at the same time
on a single structure. The default setting for mutation rate is 10%.

The evaluation of each structure is based training or testing while
comparing the best RMS Error level achieved or the least number of
epochs. There are four modes which can be set: Train Epochs, Train
Error, Test Epochs, and Test Error. Train Error finds the structure
with the least RMS Error while holding epochs to the set Fitness
Limit. Train Epochs finds the structure with the least epochs to
achieve the RMS Error level set in Fitness Limit. These two operate
on training data only. Test Error finds the structure with the least

8.2.7 Set Genetic Parameters 133



134

RMS Error in the test set data while holding epochs to the Fitness
Limit. Test Epochs finds the structure with the least epochs to achieve
the RMS Error level of the test set data as set in Fitness Limit. These
two measure RMS Error by evaluating the testing data. The default
Fitness Criteria mode is Train Error with Fitness Limit set to 100
epochs. This will optimize RMS Error while training each candidate
solution to an epoch limit of 100.

Warnings: Setting a low value of Inclusion Rate and a small Pool Size
may result in very few Input columns being evaluated. The Neuron
Limits for hidden layers in excess of those specified by the Max Layers
settings must be 0. A very high Mutation Rate means that relatively
little cross-breeding occurs, since mutation supersedes
cross-breeding. Train Epoch and Test Epoch optimize for least epochs,
so the Fitness Limit represents the reference RMS Error settings and
must be between 0 and 1 for these Fitness Criteria. Train Error and
Test Error optimize for least RMS Error, so the Fitness Limit
represents the reference epoch count and must be an integer greater
than 1 for these Fitness Criteria.

Many Config menu, Set Network Parameters, and
Set Enhanced Parameters, commands will invalidate the Genetic
Supervisor state and require another Set Genetic Parameters
command to reinitialize the Genetic Supervisor. This will cause
genetic optimization results to be lost.

8.2.7 Set Genetic Parameters Neural Menu



Neural Menu

8.2.8 Plot Training Error

Microsoft Excel - Chartl

=| File Edit View Insert Format Tools Window Help ¥
D|=|d (2] Y] & B]e]d (o]« (=] 4] [22] K E] 2] (2] [2]w2
[s] |

RS Error Ower Last 1536 Epochs r
P TREREE

045 T

0.4 o
0.5 4 i Testing Data

03T
0.25 T
ne T
018 T
01 -
005 T+

0

q

4[4[ ¥, Chartl

Ready T WuM [ [
Figure 8-15 Training Error Chart

Function: Plot Training Error will cause a line plot of the RMS
Error of the training data and the testing data over the recent training
epochs to be displayed in an Excel chart.

Usage: To use Plot Training Error execute the command.
Neuralyst will then transfer the set of values of RMS Errors of the
training data and the testing data resulting from training to that point
and create a new chart window containing line plots of the data.

Effect: Plot Training Error will display plots of the convergence of
the RMS Error values over the past training epochs of the neural
network. One plot will indicate the convergence of the neural network
on achieving learning of the training data. The second plot will show
the success of the neural network on the testing data while training
is occurring. The second plot will only be available if there is testing
data and if the Error Limit (in Set Network Parameters) has been

8.2.8 Plot Training Error 135



136

set to be non-zero. This command is executed when you want to get
an impression of how much progress has been made and how
successful the neural network has been at learning during training.

Ideal plots of the RMS Error of the training data will show a steep
descent early on with progress in further reductions of RMS Error,
though not as steep as initially, as training progresses. If the
RMS Error attains a long term plateau, then it typically indicates that
the neural network has achieved as much learning as it can. If the
RMS Error starts increasing, it often indicates that the neural
network is becoming severely overtrained. Along with the training
data, the testing data will also be plotted (if settings permit). The RMS
Error plot of the testing data can be used to measure the point at which
the neural network training was most successful on testing data.
Overtraining can often be seen earlier on this plot than for training
data.

Warnings: The line plots generated by Plot Training Error are a
snapshot of the RMS Error behavior up to the time the command was
executed. Subsequent training will not be reflected in the chart. To
view the effects of additional training, another Plot Training Error
command must be given. In this event, new line plots are created,
without effect on the previous line plots, allowing comparison of the
effects of additional training epochs.

At approximately 250 epochs, and every doubling of epochs thereafter,
the line plots will be rescaled — so plots at 100 epochs will have points
for every epoch, but plots at 300 epochs will have only 150 points per
plot (a point for every two epochs). Thus the scale will be different,
though the shape and information will be consistent.

The training error history is not retained between reloads of neural
network data. Thus if you have a partially trained neural network,
save your work, reload the next day, train some more and then do a
Plot Training Error command, the plot will only show the training
error behavior over the most recent session. The training error history
of the previous session will be lost and no longer available.

You will need to manually delete the line plots when you no longer
want them.

8.2.8 Plot Training Error Neural Menu



Neural Menu

8.2.9 Reset Weights

Figure 8-16 Weight Initialization Dialog Box

Function: Reset Weights provides for control of the weight
initialization process.

Usage: To use Reset Weights execute the command. Neuralyst will
provide a dialog box allowing for Auto or User Randomization of the
initial weight values. The range of the initial weight values may also
be set. Changes to the initialization options and the initialization
operation itself can be confirmed with an OK or else the changes and
operation may be aborted with a Cancel.

Effect: Reset Weights allows the neural network weights to be
changed to new random values. (Neural network weights are
initialized to random values to allow learning to occur without any
established patterns or biases.) Prior to resetting the weights the user
may set certain initialization options. These options are
Auto Set Randomization, User Set Randomization, and Initial Limit.
Once the options are set and the operation is confirmed, the weights
are set to new initial values.

Selection of Auto Set will provide for a completely random set of
weights. There will be no relationship between the values generated
from one instance of Auto Set Randomization to the next or other
instances of Auto Set randomization.

The user may select User Set Randomization in lieu of
Auto Set Randomization, causing a particular predetermined and
repeatable random sequence to be used, based on the value supplied

8.2.9 Reset Weights 137



138

to User Set Randomization. In other words, supplying 1 to the
User Set Randomization option will always cause the same random
numbers to be used for the weights in a given neural network.
Changing the value supplied will result in a new, but equally
repeatable, set of random values to be generated. The initial value
supplied to the User Set Randomization is 1 and may be changed to
any other integer value.

With the Randomization type selected, the user may also set the
Initial Limit value. This has a default value of 1, which means that
initial weight values will be randomly chosen from the range -1 to +1.
Reducing the Initial Limit value to 0.2, would result in initial weight
values in the range -0.2 to +0.2. Initial Limit may be set to a number
between 0 to 16, though initial values much larger than 1 are not very
useful.

This command is executed when you want a fresh start to learning or
training of the neural network. Weights are always randomized when
set to starting values since fixed or ordered starting values may result
in all neurons learning the same characteristic at the same time.
Randomization allows individual neurons to become “sensitized” to
different characteristics.

Warnings: All previous weights will be overwritten and so all prior
learning will be forgotten when Reset Weights is executed. Because
of this, Neuralyst will first ask you to confirm your intentions.

8.2.9 Reset Weights Neural Menu



Neural Menu

8.2.10 Histogram Weights

= Chant? [+«

YWeights After 400 Epochs

4
3
2
1
0

o T W e o T @ o

H[A[» [ #[, Chart1

Figure 8-17 Weight Histogram Chart

Function: Histogram Weights will cause a histogram of the
weights of the defined network to be displayed in an Excel chart.

Usage: To use Histogram Weights execute the command.
Neuralyst will then read the weights of the neural network at that
point and create a new chart window containing a histogram of the
weight data.

Effect: Histogram Weights will display the distribution of weight
values of the neural network. This command is executed when you
want to get an impression of how much progress has been made and
how successful the neural network has been at learning during
training.

Early on, the weight values will be distributed in the range
determined by the Initial Limit option in the Weight Initialization
dialog box. If this is 1, then the histogram would show weight values
distributed between -1 and +1. As time progresses, the distribution
will spread out, with many values still in the initial range but with
several values just outside the range and a few values at the extremes.
This kind of distribution is most common in successfully trained
neural networks.

If a neural network has been unsuccessful at training, a histogram of
the weights will often show a distribution heavily biased to the

139

8.2.10 Histogram Weights



140

extremes, values below -8 and above +8. This may indicate a need to
set a larger neural network or different network parameters.

Warnings: The histogram generated by Histogram Weights is a
snapshot of the weights at the time the command was executed.
Subsequent training will not be reflected in the chart. To view the
effects of additional training, another Histogram Weights command
must be given. In this event, a new histogram is created, without effect
on the previous histogram, allowing comparison of the weight
distribution from the two points of training. You will need to manually
delete the histograms when you no longer want them.

8.2.11 Unpack Weights

= Microsoft Excel H - |
File Edit View |Insert Format Tools Data WWindow Neural Config Help
D|B|E| éI@.IJIléél'lli!aI I [o] ] [=]4] [2HEY [LR]E] ) 0ox —[+] [G]r2

| Unpacked Waights

N A B [ D E F G H | +

Hl 1 [Unpackedeights

1= |

Ll 3 | Layer2 Layer 3

Ul 4 | M1| -1.60693 -1.63518 M1 -1.61473

Ll 8 | 1.459551 4.870485

Ll 6 | 3.585479

L7 | M2| 5143627 5.123119 -1.706592

L a | -2.40044

19| N2| -3.54887

Ll 10 | M3| 4.080883 4.071786 1.839368

Ll 11| -5.96504 5.019307

Ll 12 | -3.25186

|13

Ll 14 | N3| -0.66611

Ll 15 | 5.503085

Ll 16 | 6.06227

Ll 17 | -2.068621

il 18 +

WA [, Sheetl =1 \;ﬂ,
Ready [[ |CAPS [NUM [

Figure 8-18 Unpacked Weights Display

Function: Unpack Weights will cause the weights of the defined
network to be displayed in a newly created Excel worksheet in a
readable form.

8.2.11 Unpack Weights Neural Menu



Neural Menu

Usage: To use Unpack Weights execute the command. Neuralyst
will then write the unpacked weight values in a new Excel worksheet
window.

Effect: Unpack Weightswill cause a formatted display of the weight
values to be written to a newly created Excel worksheet. This display
is organized by neural network layers and by neurons in each layer,
with each component being so labeled.

The first neural network layer displayed is Layer 2 (Layer 1 “neurons”
are the inputs themselves by convention). The weights of each neuron
in Layer 2 are shown in multiple columns grouped by neurons. The
separate columns reflect the weights applied to each column
designated as an input. The rows of the grouped columns reflect the
different weights for each row used when multi-row inputs are
defined. Thus the pattern window created by the number of inputs
and the number of rows per pattern corresponds directly to the values
shown in the columns and rows, respectively, for each neuron in the
Layer 2 weight display. These weight values are outlined for each
neuron. The threshold value for each neuron is outlined separately
and terminates the weight values.

Subsequent neural network layers are displayed in a more simplified
way with the weights of a neuron shown in single columns grouped
by neurons. The first value in each column reflects the weight from
the first neuron of the previous layer to that neuron, the second value
in each column reflects the weight from the second neuron of the
previous layer to that neuron, and so on. The column of weights is
outlined for each neuron. The threshold value for each neuron is
outlined separately and terminates the weight values.

Warnings: The display of weights generated by Unpack Weights is
a snapshot of the weights at the time the command was executed.
Subsequent training will not be reflected in the display. To view the
effects of additional training, another Unpack Weights command
must be given. In this event, a new worksheet will be created. You
will need to manually delete the worksheets when you no longer want
them.

8.2.11 Unpack Weights 141



8.3 Neuralyst Working Area

142

The Neuralyst Working Area is the area set aside for Neuralyst to
save its internal data, save its control parameters and display its
progress to you.

The Working Area is divided into several distinct areas: the
Title Block, the Statistics Block, the Parameter Block, the
Row Description Block, the Column Description Block, the
Network Description Block, and the Network Weights Block. Also
within the Working Area are three areas which are dedicated to the
Genetic Supervisor: the Genetic Statistics Block, the Genetic
Parameter Block, and the Genetic State Block.

Warning: Some fields in the Working Area depend on Excel
calculations to be set to their proper values. If you have the Excel
calculation mode set to Manual, instead of Automatic, then the
information in these fields will not be properly updated. This may
result in improper initialization or incorrect statistical updates while
Neuralyst is executing.

It is generally best to have the Excel Calculation mode set to
Automatic when working with Neuralyst. However, in some cases,
particularly with large amounts of data or formulas, Excel is more
responsive if Manual Calculation is set. In such cases, you may keep
it set to Manual, switching to Automatic when you execute an
operation from the Neuralyst Config menu or when actually training,
testing, or running.

8.2.11 Unpack Weights Working Area



Working Area

8.3.1 Title Block

= Microsoft Excel =
File Edit ¥iew Insert Format Tools Data Window MNeural Config Help

|| [SR]¥][* [E[@[S) (o]« [=]A] 22 [K[E] 8]z (][]

NwTL & [ Meuralyst (Th) Wersion 1.4
LOGIC.XLS
K L M N 6] P Q R S T [+
1 MNeurakyst | Th) Wersion 1.4
2 Copyright ©1934 Cheshire Engineering Corp, Porions Copyright ® 13301994 EPIC Systerns Co
3
4 MNetwork Run Statistics
5 0.054459 RMS Error Fow [nformation Colurnn Informatio
b 12|NMumber of Data lterns 6 First Fow # Input Columns
7 12|Mumber Right 9 Last Row 2
8 0 NumberWrang 4 Murmber of Rows Input Calumns
9 100% |Percent Right 1 Rows/Pattern A
10 0% PercentWrong 1 Row Offset B
11 400 Training Epochs AB
12
13 MNetwork Parameters Enhanced Parameters
14 1 Learning rate Sigrmoid | Function
15 0.9 Momenturn 1/Function Gain
16 0/ Input Moise FALSE Force Zero
17 0.1 Training Tolerance 0/ Zero Threshald

18 0.3 Testing Tolerance FALSE Adaptive LR ¥
(M« [, LOGIC T« =
Ready MU [

Figure 8-19 Title, Statistics & Parameter Blocks

The Title Block identifies the name of the program and provides the
copyright notice for Neuralyst.

The Title Block is also used to carry the version number of Neuralyst
that created and maintained the Working Area. This is useful when
upgrading to new versions of Neuralyst. When a new version of
Neuralyst is loaded with an old Neuralyst worksheet, it will check the
version number and update the worksheet if possible or inform you of
the need for conversion.

The Title Block also defines the top left corner of the Neuralyst
Working Area. Any cell in the same row or higher and in the same
column or higher is subject to modification by Neuralyst.

8.3.1 Title Block 143



144

8.3.2 Statistics Block

The Statistics Block allows you to monitor the progress of training of
the neural network and shows the success of prediction in test cases.
The values in this block are updated for each cycle of the defined data
during training or at the end of the defined data during testing or
running.

RMS Error shows the root mean square error (the square root of the
average of the error terms squared, a better measure than a simple
average since errors of opposite signs cannot cancel each other) during
training or testing between the outputs and the targets; it is not
meaningful when running since there are no valid targets. When the
neural network is training, the RMS Error should generally decrease
at a steady rate, though there may be some short term fluctuations
which cause small increases. If there are large fluctuations or the RMS
Error is increasing, then some adjustment of Learning Rate or
Momentum is needed through the Set Network Parameters
command.

Number of Data Items represents the total count of cells in the Output
columns or Target columns (remember Output columns are paired
with Target columns) that are in the Problem Definition Area
matching the current operating mode. For example, if there are two
Output columns with 6 training rows (TRAIN flag) and 3 testing rows
(TEST flag), then executing Train Network will cause this
count to be 12 (2 columns times 6 rows) or executing
Run/Predict with Network will cause this count to be 6 (2 columns
times 3 rows).

Number Right represents how many of the data items counted in
Number of Data Items have matching outputs and targets within the
effective Tolerance parameter. Number Wrong represents those that
are not within the effective, Training or Testing, Tolerance parameter.
Percent Right and Percent Wrong are similar, except representing
percentage values instead of counts.

When the network is training successfully, you will see these values
change from predominantly wrong or a mix of right and wrong to
mostly or all right. When the Number Right matches the Number of
Data Items (the Percentage Right is 100%), then training will stop

8.3.2 Statistics Block Working Area



Working Area

automatically. When the network is testing, the Number Right and
Number Wrong have similar meanings but in this case should be
treated more as “scores” for the level of predictive success rather than
a running indicator of learning progress. When the network is
running, these values have no meaning.

The number of training epochs the neural network has undergone is
recorded by the value of Training Epochs. In some circumstances, the
user may prefer to limit training to a fixed number of epochs; Training
Epochs provides this capability. In other circumstances, particularly
when the user is trying to measure how well the neural network is
learning under changing conditions, Training Epochs provides a
reference point for evaluating training performance.

8.3.3 Parameter Block

The Parameter Block consists of two parts. The first part contains the
current values of the Network Parameters. They may be changed
through the Set Network Parameters command. The parameters
displayed are Learning Rate, Momentum, Input Noise, Training
Tolerance, Testing Tolerance, Epochs per Update, Epoch Limit, Time
Limit, and Error Limit. The second part contains the current settings
of the Enhanced Parameters. They may be changed through the
Set Enhanced Parameters command. The parameters displayed
are Function, Function Gain, Force Zero, Zero Threshold, and
Adaptive Learning Rate.

Learning Rate determines the magnitude of the correction term
applied to adjust each neuron’s weights when training. Learning Rate
corresponds to the variable LR in Equation 3-3. Learning Rate must
be positive, is usually adjusted in the range of 0 to 1 and has a default
value of 1. Large values of Learning Rate will cause the network to
train more quickly, but too large a value may cause the training to be
unstable and no learning will occur.

Momentum determines the “lifetime” of a correction term as the
training process takes place. Momentum corresponds to the
variable M in Equation 3-6. Momentum must be greater than or equal
to O but less than 1 and has a default of 0.9. Values of Momentum
closer to 1 will cause the neural network to retain more of the impact
of previous corrections to the current corrections. Values of

8.3.3 Parameter Block 145



146

Momentum close to 0 will allow mostly or only the current corrective
term to have an effect. Momentum helps to smooth out the training
process so that no single aberrant instance can force learning in an
undesirable direction.

The Input Noise parameter enables the addition of noise during the
training process. Input Noise has a value of 0 as a default, meaning
no noise is added. Input Noise should be set between 0 and 1, meaning
0% to 100% of the input range will be set as a noise range. For example,
if the input ranges from 0 to 15 and the Input Noise is set to 0.1, then
random values ranging from 0 to 1.5, 10% of 15, will be added to or
subtracted from each input value. Input Noise is only in effect when
training.

The Training Tolerance and Testing Tolerance parameters define the
percentage error allowed in comparing the neural network output to
the target value to be scored as “Right” during training and testing,
respectively. The Tolerance parameters should be between 0 and 1;
with Training Tolerance having 0.1, or 10%, as a default and
Testing Tolerance having 0.3, or 30%, as a default. The Tolerance
parameters are defined as a percentage of the range between the
highest and lowest values in the Target columns. For example, if
values in the Target columns ranged from 100 to 300, a Tolerance of
0.2, corresponding to 20%, would allow errors of 20% of 200 (300 minus
100) or 40. The Training Tolerance value has no effect on the learning
algorithm. However, when Neuralyst finds 100% Right, as defined by
Training Tolerance, it will automatically stop training. The
Testing Tolerance value is used only for scoring during testing or
running.

The Epochs per Update parameter allows you to control the number
of epochs between updates of the neural network results which are
displayed in the Network Run Statistics block in the worksheet.
Epochs per Update has a default value of 1. However larger values
will mean less frequent communication between the neural network
and the worksheet, reducing overall training time.

The Epoch Limit parameter sets a maximum number of training
epochs the neural network will undergo in those situations where you
wish to control the number of training epochs rather than setting a

8.3.3 Parameter Block Working Area



Working Area

Training Tolerance. Epoch Limit has a default value of 0, which means
that there is no limit set.

The Time Limit parameter sets a maximum number of hours (enter
minutes as a decimal fraction of an hour, for example 0.25 would be
%4 hour or 15 minutes) to continue training. Time Limit has a default
value of 0 which means that there is no limit set.

The Error Limit parameter sets a maximum increase in the
RMS Error value from training epoch to training epoch. Under normal
circumstances, a neural network that is training properly will steadily
decrease the RMS Error. However, if the neural network exceeds its
capacity or starts experiencing some effects of overtraining, some
epochs may increase the RMS Error. Setting an Error Limit value will
stop the training process if the RMS Error increases on any given
epoch more than the amount set. Error Limit has a default value of 0
which means that there is no limit set.

When more than one of Epoch Limit, Time Limit, or Error Limit, is
set, whichever limit is reached first will terminate the training
process. When no limit is set or if limits are set but the limit condition
is never reached, the normal termination condition occurs when the
neural network outputs meet the Training Tolerance criteria for all
training data.

The Function parameter allows a change of the neuron activation
function described in Section 3.3. The functions that are available are:
Gaussian, Linear, Sigmoid, Step, Hyperbolic and Augmented Ratio.
The Gaussian function is a smooth, differentiable function which
transforms values within a range close to 0 to +1, very large negative
or positive values to 0, and transforms intermediate values with
varying proportion. The Linear function provides a continuous
response multiplying input values by a constant scaling factor until
the limits of O or +1 are reached. The Sigmoid function is also a smooth,
differentiable function, which forces large negative or large positive
values to O or +1, respectively, but transforms intermediate values
with varying proportion. The Step function is a sharp switching
function, all negative inputs are forced to 0 and all positive inputs are
forced to +1. The Hyperbolic function is another smooth,
differentiable function, which forces large negative or large positive
values to -1 or +1, respectively, but transforms intermediate values

8.3.3 Parameter Block 147



148

with varying proportion. The Hyperbolic function is actually the
Hyperbolic Tangent function and is very similar to the Sigmoid
function, except it is negative-going. The Augmented Ratio function
is a smooth, differentiable function which transforms values within a
range close to 0 to O, very large negative or positive values to 1, and
transforms intermediate values with varying proportion. The
Augmented Ratio function is similar to the Gaussian function, but
inverted. Thus selecting different neuron functions can significantly
change the behavior of the neuron.

The Function Gain parameter allows a change in the scaling or width
of the selected Function. Increasing Function Gain will narrow the
central region in the Gaussian function or steepen the slope of the
Linear function and the Sigmoid function. Decreasing the
Function Gain, correspondingly, will broaden the central region in the
Gaussian Function or make the slope of the Linear or Sigmoid
functions shallower. With a Function Gain setting of 1, all three
functions will cover the normal input range of the neural network
smoothly. The Function Gain applies to all of the Activation Functions
except the Step function.

The Force Zero parameter enables a special mode which scans the
weights after every training epoch and sets those weights which are
close to 0 to be 0. The Zero Threshold parameter selects the threshold
below which weight values are set to 0. Thus, a Zero Threshold value
of 0.01 with Force Zero enabled will cause a weight value of 0.009 to
be made to be 0, while a value of 0.15 will be left unchanged.

The Adaptive Learning Rate parameter enables a special mode which
evaluates the RMS Error after every training epoch and causes a
revision of the Learning Rate for the next training epoch. If the RMS
Error is high, then a high Learning Rate will be set, as the RMS Error
is reduced, the Learning Rate will be reduced correspondingly. The
net effect is to speed up the training process when the neural network
is far away from the correct weights, but to slow it down as it gets closer.

The Calculation Method parameter allows a selection of Fixed Point
calculation or Floating Point calculation. Fixed Point mode is a very
fast and memory efficient technique, allowing speeds up to 2-3x a
computer equipped with a math co-processor using Floating Point
calculations. It is inherently less precise, but is satisfactory for the

8.3.3 Parameter Block Working Area



Working Area

mayjority of neural network problems that require precision to only 2-3
places. Floating Point mode is more precise and has higher resolution,
but requires a math co-processor — not present on many 386, 486SX,
486SL, 68030, and 68LC040 processors — more memory and more
processing time. Fixed Point mode was the native mode of earlier
versions of Neuralyst; but now either mode can be selected depending
on the circumstances.

The Scaling Margin parameter adds additional headroom, as a
percentage of range, to the rescaling computations used by Neuralyst
in preparing data for the neural network or interpreting data from
the neural network. All Input, Target, and Output data actually
processed by the neural network must be in the range 0 to 1. As a
consequence, all data presented or interpreted is rescaled from the
actual worksheet values to values in the range of 0 to 1. Setting
Scaling Margin above 0, increases the amount of headroom or margin,
decreasing the range onto which an Input, Target, or Output, is
mapped. As an example, if the Scaling Margin is set to 0.1, or 10%,
then 10% margin is allowed and split between the high end and the
low end of the range, resulting in a mapping to the range 0.05 to 0.95
rather than 0 to 1. This margin can facilitate precision in problems
that have continuously variable data or that may exceed the current
values in the future by a small amount. Scaling Margin modifies the
Min or Max limits that may be set for an input or target by the
designated amount.

The options of Input Noise, Force Zero, and Adaptive Learning Rate
will typically increase the total number of training epochs it takes to
achieve a successfully trained neural network over a “no-frills”
approach. However, when used judiciously, the quality of training -
and the corresponding quality of predictions — of the neural network
can be notably improved. Fixed Point calculation mode generally
provides the fastest training; however, for continuously variable
inputs or outputs requiring high resolution, Floating Point calculation
mode can be more precise. In addition, on high performance Pentiums
or PowerPCs, Floating Point approaches Fixed Point speed. Scaling
Margin is another control which is useful for problems that have
continuously variable inputs or outputs to allow higher precision.

8.3.3 Parameter Block 149



150

8.3.4 Row Description Block

= Microsoft Excel =

File Edit ¥View |Inset Format Tools Data Window Neural Config Help

s EEENE B EE EE A P RS R TS 2

MwTL 3] | Meuralyst (TM) Wersion 1.4
P Q R S T u hd W X +

1
2 [0, Portions Copyright @ 1930-1994 EPIC Systems Corp
3
4
5 |Fow Information Colurnn Information
b B First Fow # Input Columns # Target Colurnns # Output Columns
7 9|Last Pow 2 3 3
8 4 Murnber of Rows Input Colurmns Target Columns Output Columns
9 1 Rows/Pattern A D H
10 1|Row Offset B E |
11 AB F J
12 C.EF H.LJ

13 |Enhanced Parameters
14 | Sigmoid Function

15 1 Function Gain

16 FALSE Force Zero

17 0 Zero Threshald

18 FALSE Adaptive LR >
W[« [* M LOGIC, IC =
Ready [ MR T

Figure 8-20 Row & Column Description Blocks

The Row Description Block contains the row information bounding
the defined data and the spacing and offset information describing the
pattern window.

The First Row and Last Row values mark the beginning and end of
the Problem Definition Area, respectively. The Total Number of Rows
represents the rows within and including those bounding rows.

Rows/Pattern describes the number of rows that are included in each
pattern presented to the neural network. It can be considered as
describing the height of the pattern window. Row Offset describes the
number of rows to shift between patterns presented to the neural
network. It can be considered as describing the step size of the pattern
window. A Row Offset equal to Rows/Pattern means that the pattern
window is stepped the same number of rows as its height, in other

8.3.4 Row Description Block Working Area



Working Area

words a series of contiguous but non-overlapping two-dimensional
input patterns is defined.

The intersection of the rows set in the Row Description Block and the
columns listed in the Column Description Block constitutes the
Problem Definition Area.

8.3.5 Column Description Block

The Column Description Block contains the column lists that describe
the columns that constitute the defined data and represent each
component of the pattern window.

The first three fields of the block, # Input Columns, # Target Columns,
and # Output Columns, have counts of the number of columns of each
type. Below each count is the actual list of Input Columns,
Target Columns, and Output Columns. Each column is listed in its
own cell in sequence, but a terminating cell contains all the columns
of that type as one string.

The Mode Flag Column? field shows either FALSE, indicating no Mode
Flag Column is set, or the column that has been set. If a Mode Flag
Column is not set then all rows, as defined by the other parameters,
are input to the neural network when either Train Network or
Run/Predict with Network are executed. If a Mode Flag Column
is set then the values in the fields are used to switch between training
or testing/running modes.

The Min Scale Row? field shows either FALSE, indicating no MIN scale
row is set, or the number of the row that has been set. If no MIN
scale row is set, then the neural network takes its minimum
value for rescaling by searching each column to find the
minimum. If a MIN scale row is set then the values in each column
are used as the minimum for rescaling purposes.

The Max Scale Row? field shows either FALSE, indicating no MAX scale
row is set, or the number of the row that has been set. If no MAX scale
row is set, then the neural network takes its maximum value for
rescaling by searching each column to find the maximum. If a MAX
scale row is set then the values in each column are used as the
maximum for rescaling purposes.

8.3.5 Column Description Block 151



152

The Symbol Row? field shows either FALSE, indicating no SYMBOL
row is set, or the number of the row that has been set. If no SYMBOL
row is set, then the neural network expects that all column data will
be numeric only. If a SYMBOL row is set then those columns that
have a Symbol List defined should contain symbols that are only from
that Symbol List, those columns that do not have a Symbol List
defined should contain numeric values only.

The intersection of the rows set in the Row Description Block and the
columns listed in the Column Description Block constitutes the
defined data and the description of the pattern window.

8.3.6 Network Description Block

= Microsoft Excel v |~
File Edit View |Insert Format Tools Data WWindow Neural Config Help

Disdl([S|R]v][&|=[a] o] ) (=]~ [2HEY L] @) s [2][9]r2)
_MNwTL [2] | Meuralyst (TM) Yersion 1.4

= - [~

AB AC AD AE AF AG AH Al Ad +

#Layers Walid? MNetwork Weights

3 TRUE | -160693 -163518 1.459581 B143627 5123119 -2.40044 4.080883
# Meurons per Layer | -B.96504) -1.61473) 4870455 3585479 -1.70692 -354887 1.839369
9 2 -3126186 -0.BEE11 RE03088 -6.06227 -2.08621 0 0
10 3
11 3

1
2
3
4
5 |Metwoark Information
b
7
8

18
4] 4[> [, LOGIC =l ] \:E
Ready | T _moMI T T

Figure 8-21 Network Description & Weights Blocks

The Network Description Block contains information describing the
structure of the neural network.

8.3.6 Network Description Block Working Area



Working Area

# Layers indicates the number of layers in the neural network. Two
of the layers are there by default, the input and output layers, and
are always part of the count so the minimum value is 2.

# Neurons per Layer lists the number of neurons in each layer in
sequential rows. The first row of the field is the number of neurons in
the input layer, the last row is the number of neurons in the output
layer. These two numbers are fixed and defined by the number of
Input columns and Target or Output columns. The hidden layers are
variable and the number can be set when defining the neural network
structure with Set Network Size.

There is also a Valid? flag which indicates whether or not the
information in the Network Weight Block is correct or may have been
changed and needs to be redefined.

8.3.7 Network Weights Block

The Network Weights Block contains a copy of the weights of the
neural network and is kept current as the neural network is trained.

When first initialized, the weights are set to random values and there
is no meaning to their values. After the neural network has been
trained, the value of the weights represent all the learning the neural
network has done to that point. Once a neural network has been
trained, you should be careful about accidentally re-initializing or
otherwise changing these weights; there is no way to reconstruct the
weights without retraining the neural network.

It is possible to make a copy of the current weight set and save it
elsewhere on the worksheet. Then if you want restore the saved
weight set, copy it back to the Network Weight Block. In order for this
to work, the network size must not have changed or the network size
must be restored to the same configuration as at the time the weight
set was saved.

In some cases, it is possible to analyze or interpret the weights. The
Histogram Weights and Unpack Weights commands provide you
with some methods of viewing the weights when attempting this.

8.3.7 Network Weights Block 153



154

The Histogram Weights command will display the distribution of
weight values of the neural network in a histogram chart (see
Section 8.2.10).

The Unpack Weights command provides a formatted display of the
neural network weights. This display is organized by neural network
layers and by neurons in each layer (see Section 8.2.11).

8.3.8 Genetic Statistics Block

= Microsoft Excel v |~
File Edit ¥iew Insert Format Tools Data Window Neural Config Help

Ol=]E] [l ¥][# B[] (o] (=] 4] (212 [K[E]H]) 100 o

25 4 0.75
L M N 0 P Q R 5 T *

24 |Genetic Training Statistics Genetic Training Parameters

25 50| Generation Count 0.75 Inclusion Rate

26 3 Structure Count 4 Max Layers

27 0.24965 Least RMS Error 30/ L2 Neuron Lirmnit

28 100/ Least Epochs 10/L3 Neuron Lirnit :I
29 0/L4 Meuron Lirnit

30 0/L5 Meuron Lirmnit

31 0.5 Min Leaming Rate

32 1 hax Momentum

33 0.03 Max Input Moise

34 3 FPopulation Size

35 Imrmigrate Population Mode

36 1 Crossovers

37 0.1 Mutation Rate

38 Train Error Fitness Criteria

39 100 Fithess Limit

40

41 =
[« M, LOGIC Il 1 \:E
Ready [T oMl [ [

Figure 8-22 Genetic Statistics & Parameters Blocks

The Genetic Statistics Block displays a brief summary of Genetic
Supervisor results when it is in operation. There are four fields:
Generation Count, Structure Count, Least RMS Error, and Least
Epochs. The Structure Count field is updated every time another
structure is evaluated. The Generation Count, Least RMS Error, and
Least Epoch fields are updated after all the structures of a population
are evaluated.

8.3.8 Genetic Statistics Block Working Area



Working Area

The Generation Count and Structure Count fields maintain numeric
counts of the current structure under evaluation. The Generation
Count will count up to the generation limit set in
Run Genetic Supervisor. When this count is reached, genetic
optimization will halt. At this time, the best structure may be
retrieved, or genetic optimization may be resumed under different
Population Mode, Genetic Operator, or Fitness Criteria settings. The
Structure Count will count up to the Pool Size set in the Population
Mode settings. On evaluating the last structure of a population, the
structure that best meets the Fitness Criteria that is set will have its
RMS Error and epoch count reported in the Least RMS Error and
Least Epochs fields.

8.3.9 Genetic Parameters Block

The Genetic Parameters Block contains fifteen parameters, Inclusion
Rate, Max Layers, four Layer n Neuron Limits, Learning Rate,
Momentum, Input Noise, Pool Size, Pool Mode, Crossovers, Mutation
Rate, Fitness Criteria, and Fitness Limit, that bound the limits of the
genetic optimization process and change the behavior of the Genetic
Supervisor.

The Input column Inclusion Rate controls the average rate of Input
column inclusion in structure initialization. The user may select a
nominal percentage from 1 to 100% which represents the average rate
of inclusion. If the user wants to force all Input columns to be included,
then the user can set 100%. The default setting is 75%.

The first and last layer of each neural network is automatically
determined by the number of inputs and outputs defined for the
original neural network model. Within those constraints, the
optimized neural network can have from two to six layers and a wide
range of variations in number of neurons per layer. The user can
constrain the maximum number of layers and the maximum number
of neurons per hidden layer. An implicit rule is that if a lower hidden
layer is zero, then higher hidden layer must be zero. The default
maximum settings are 4 layers, an input layer, 2 hidden layers, and
an output layer; with 30 neurons in the first hidden layer and 10
neurons in the second hidden layer.

8.3.9 Genetic Parameters Block 155



156

There are three network parameters which can be optimized by the
Genetic Supervisor: Learning Rate, Momentum, and Input Noise.
Learning Rate and Momentum can vary from almost O to 1, while the
Input Noise can vary from 0 to 0.1. The user can constrain the
minimum value of Learning Rate, the maximum value of Momentum,
and the maximum value of Input Noise. The default values are 0.5 for
Learning Rate, 1 for Momentum, and 0.03 for Input Noise.

There are two controls which determine the management of
populations. The first is a control which sets the total population size.
Changing this sets the number of structures initialized or evaluated
in each generation. The second is a control which chooses among the
three modes: Closed Pool, Immigration, or Emigration. With Closed
Pool set, then the initial population pool will only be cross-bred or
mutated with no new structures initialized. With Immigration set,
the population pool will be evolved and every generation new
structures will replace the weakest structures of the existing pool.
With Emigration set, the population pool will be evolved and every
generation the best structure will be emigrated to an entirely new
population. The default settings are for population size to be 3 and
Immigration to be enabled.

There are two settings the user can control to determine the
mechanism for genetic optimization. These settings are Crossover
frequency and Mutation Rate. The primary mechanism is
cross-breeding controlled by Crossover frequency, where structures
are intermingled to create new structures. The crossover rate
determines the amount of intermingling. The maximum setting for
crossover rate is 10. The secondary mechanism for creating new
structures is mutation. With mutation, structures are chosen at
random, then features are randomly changed to new values. The
mutation rate sets the percentage of structures which will undergo a
mutation rather than a cross-breeding to create the new population.
The maximum setting for mutation is 100%. Mutation is always in
place of cross-breeding; the two never occur at the same time on a
single structure. The default settings are for crossover rate to be 1 and
mutation rate to be 10%.

The evaluation of each structure is based training or testing while
comparing the best RMS Error level achieved or the least number of
epochs. There are four modes which can be set: Train Epochs, Train

8.3.9 Genetic Parameters Block Working Area



Error, Test Epochs, and Test Error. Train Error finds the structure
with the least RMS Error while holding epochs to the set Fitness
Limit. Train Epochs finds the structure with the least epochs to
achieve the RMS Error level set in Fitness Limit. These two operate
on training data only. Test Error finds the structure with the least
RMS Error in the test set data while holding epochs to the Fitness
Limit. Test Epochs finds the structure with the least epochs to achieve
the RMS Error level of the test set data as set in Fitness Limit. These
two measure RMS Error by evaluating the testing data. The default
Fitness Criteria mode is Train Error with Fitness Limit set to 100
epochs. This will optimize RMS Error while training each candidate
solution to an epoch limit of 100.

8.3.10 Genetic State Block

= Microsoft Excel =
File Edit ¥iew Insert Format Tools Data Window MNeural Config Help
[Cl=]a) [Sa]¥] [ [B[e[d] o]~ [=]A] Bz [SE][e] v [ [
SE2E | | 0.9922452967 3767
LOGIC.XLS —
AC Y
Genetic State Information
0.75
2
3
1 ]
1
1
0
0
4
30
10
0
0
05
1
0.03
0 +
. »
T RoM

Figure 8-23 Genetic State Block

The Genetic State Block contains information necessary for the
Genetic Supervisor to retain intermediate state information. It is not

Working Area 8.3.10 Genetic State Block 157



a complete state information area and so it is not sufficient to support
a full reload operation between Neuralyst sessions.

There is no command to support interpretation or display of the
genetic state information.

158 8.3.10 Genetic State Block Working Area



Appendix A
Help Me!

Some of the more common difficulties that you may experience have
been listed here. If you have a problem, please review this section and
see if the solution or answer has been provided. If there is an Error
Message associated with your problem, please check Appendix B for
a list of Error Messages and their causes. If you still experience
difficulties, then please consult with Cheshire Customer Service, as
discussed in Appendix C.

A.1 Installation Problems

A.1.1 Windows Problems

I tried to run the install program but I got an error saying “This
program requires Microsoft Windows.”

The install software can only be run from within Windows. Start
up Windows and then follow the install instructions in Chapter 2
of the Neuralyst User’s Guide.

When | ran the install program | got an error saying “Unable to copy
file to destination directory. Check your free disk space.”

The Neuralyst software requires about 300K bytes of free disk
space. If the install fails due to lack of space, try specifying a
different disk drive than C: in the box holding the directory to
install to, or else clear some room on your disk and try again.

A.1 Installation Problems 159



160

The install program fails with the message “Unable to create
directory to copy to.” What's happening?

The install program allows you to specify the directory to install
the Neuralyst software to. The default is C:\NEURLYST, which is
fine for most systems. If you get this message it indicates that the
directory that you have specified cannot be created. Make sure
you have given a drive letter and destination directory that would
be legal on your system. If you have no drive C, for example, edit
the default to a drive appropriate for your system before
continuing.

The Neuralyst installer will create the destination directory to
hold the files, but it won't create a whole chain of directories. If
you specify C:\X\Y\NEURLYST for your destination, C:\X\Y must
already exist. The install program will then create the NEURLYST
subdirectory within the \X\Y directory. However, it won't create
\X and \X\Y for you. You would have to do that before running the
install program.

I reinstalled the software and then when | ran Neuralyst, | got an
error message saying “Change Disk. Cannot find NEUR14.DLL. Please
insert in Drive A:.” What's happening?

This message can only appear in a situation where you are doing
a second or later install of Neuralyst. It will not occur on a normal
first installation. If you reinstall Neuralyst you must exit
Windows after the installation and then restart Windows. That
will prevent this message from occurring.

The problem occurs because of the way Windows handles program
libraries like the NEUR14.DLL file included with Neuralyst. If an
old version of NEUR14.DLL has been running and a new version is
installed, Windows gets confused about whether you want the old
version or the new one to be running. Restarting Windows clears
the old version from memory, eliminating the confusion.

A.1 Installation Problems



The install program still isn’t working for me even after following all
this advice. What can | do?

Please contact Cheshire Customer Service for assistance. We are
committed to getting you up and running with Neuralyst as soon
as possible!

A.1.2 Macintosh Problems
Something went wrong with my install.

You should first make sure Excel has been properly installed.
Then clear the Neuralyst folder from your hard disk. Re-drag the
Neuralyst folder from the installation disk to your hard disk. Be
sure to launch Neuralyst from the Excel macro file named
Neuralyst, NOT from the Cheshire icon labeled Neuralyst Lib. If
you still have problems, call Cheshire Customer Service.

| installed Neuralyst on my small screen Macintosh running with
System 7; but when I tried to run Neuralyst, | couldn’t find the Neural
and Config menus; the N might have been there, but that was all.

On small screens (those with horizontal resolution of 512 pixels),
the combination of the Excel menus and the System 7 Multifinder
menu leaves no room for any additional menu items. After
installing Neuralyst, you should copy the contents of the folder
Small Screen I/F into the Neuralyst folder. This will replace the
standard menu interface with a special menu interface that is
called on command. See the documentation in the folder for
further details.

A.1 Installation Problems 161



A.2 Neuralyst Problems

162

Whenever I give acommand I gettheerror “Initialize or Reload the
worksheet.”

You have to tell Neuralyst that you want to use a particular
worksheet before you can give any Neuralyst commands. If it is
a new worksheet that you haven't run Neuralyst on before, use
the Init Working Area command to set it up. If it's a worksheet
that you have used Neuralyst on in the past, use the
Reload Network command. After one of these two commands is
given Neuralyst will know that you want it to use this worksheet
for its operations.

I try to give a command but | get an error telling me to “Select
worksheet XYZ first.”

After you tell Neuralyst which worksheet to use with either the
Init Working Area or Reload Network commands, it
remembers that worksheet name. Then when you give another
Neuralyst command it checks to make sure that worksheet is still
the active one (the one in front of all others). If it isn't, you get
this message telling you to bring your worksheet to the front.

If you actually want to start using a different worksheet than the
one you were using before, bring that one to the front and give
the Reload Network command. Then if you want to switch back
to the firstone, bring it back to the front and do Reload Network
again. It's always safe to do Reload Network in order to make
sure that the worksheet in the front is the one that Neuralyst is
working with.

When 1 give the Reload Network command, | get a message saying
“Worksheet XYZ must be initialized.”

This message means that Neuralyst does not think that your
worksheet ever got initialized with the Init Working Area
command. Neuralyst remembers this fact by creating a named
cell in the top left corner of the Working Area, the cell which has
the Neuralyst program name and version number. This cell must
have the name NWTL.

A.2 Neuralyst Problems



If you have accidentally deleted that name from your worksheet,
you can re-create it by selecting the cell with the Neuralyst
program name, and giving Excel's Define Name command. Type
_NWTL inthe box labeled Name: and hit OK. Neuralyst will now
be able to find the Working Area on your sheet when you give the
Reload Network command.

After | set the network size, | got a message saying “Input Column C
is bad.”

Neuralyst checks your columns to make sure that they hold valid
numeric data. This message indicates that your column C has
some invalid data in the rows that Neuralyst is looking at. Take
a look at the Row Information block in the Working Area; it's just
to the right of the Network Run Statistics block. Look at the
entries for First Row and Last Row to see what range of rows
Neuralyst is working with. Then look carefully at your column C
in that range of rows. Find the non-numeric data and replace it.
Blank cells will be treated as zeros, which may be OK for your
particular application, but any cells with text or error values will
not be acceptable.

I made a change to the values in one of my target columns, but
Neuralyst seems to be training to the old value, ignoring the change.

After any change to the values in your Input, Target, or Mode
Flag columns, you need to give the Reload Network command
to force Neuralyst to re-read your columns and pick up the
changed data. Neuralyst will also re-read your column data after
the Set Network Size command, or if you have changed the set
of rows and columns in use by giving the Set Rows or one of the
column commands.

A.2 Neuralyst Problems 163



164

A.2.1 Windows Problems

I ran two Neuralysts at the same time so | could have two different
Neuralyst worksheets running, but | am seeing strange behavior and
getting bad results.

You can’'t run two Neuralysts at the same time. Windows is only
able to load one instance of the Neuralyst program library
NEUR14.DLL at one time. When two instances of Excel running with
Neuralyst both try to interface with the single instance of
NEUR14.DLL that is available, then data transfers and other
communications gets confused and errors will result.

If you want to run two or more instances of Excel at the same
time, that is OK so long as only one of them is running with
Neuralyst. Within a single instance of Excel running with
Neuralyst, you may open as many worksheets as Excel will allow
and switch between them using Reload Network as described
in the previous problem.

I got an error message which the manual said represents an internal
problem in the Neuralyst software. What should | do?

The Neuralyst design team has made every effort to provide you
with reliable, bug-free software. However, errors may still exist.
Should you encounter such a problem, please inform Cheshire
Customer Service of the error message and the conditions under
which it occurred. We will work with you to resolve the problem
as quickly as possible.

Neuralyst keeps a great deal of its data in the Working Area. Any
accidental alteration you might make to this data could cause
Neuralyst to behave incorrectly or to abort with an error message.
Also, much of the Neuralyst functionality resides in a program
library which is loaded with Excel. If that library should become
corrupted, it will be necessary to exit and then re-start Windows
to load a fresh copy of the program. Cheshire Customer Service
can provide more information in these situations.

A.2 Neuralyst Problems



A.2.2 Macintosh Problems

I got an error message which the manual said represents an internal
problem in the Neuralyst software. What should | do?

The Neuralyst design team has made every effort to provide you
with reliable, bug-free software. However, errors may still exist.
Should you encounter such a problem, please inform Cheshire
Customer Service of the error message and the conditions under
which it occurred. We will work with you to resolve the problem
as quickly as possible.

Neuralyst keeps a great deal of its data in the Working Area. Any
accidental alteration you might make to this data could cause
Neuralyst to behave incorrectly or to abort with an error message.
Also, much of the Neuralyst functionality resides in a program
library which is loaded with Excel. If that library should become
corrupted, it may be necessary to Restart the Macintosh and
re-load Neuralyst and Excel to load a fresh copy of the program.
Cheshire Customer Service can provide more information in
these situations.

A.2 Neuralyst Problems 165



166 A.2 Neuralyst Problems



Appendix B

Error Messages

Neuralyst Error Messages have been included here in alphabetical
order. If the Error Message you see is not listed here, then it is likely
that the message is being given by DOS, Windows, or Excel. In that
case, you may have to refer to their respective manuals for help.

Bad
Bad
Bad
Bad
Bad
Bad
Bad
Bad
Bad
Bad

Bad

arg
arg
arg
arg
arg
arg
arg
arg
arg
arg

to
to
to
to
to
to
to
to
to
to

GenNextPop

Init

InitPop

SetParams
SetEnhanced
SetCutoffs
SetWeights

SetColumn

SetColumn for blanks
TrainNextSchema

These messages should never appear; they represent an internal
problem in the Neuralyst software. Other causes could include
accidental changes made to the data Neuralyst stores in the
Working Area.

column in SelectDataMode

This message should never appear; it represents an internal
problem in Neuralyst and indicates that an invalid column was
created.

Appendix B Error Messages 167



168

Bad
Bad

Bad

Bad
Bad
Bad
Bad
Bad

column string in GetSchema
selector in GetSchema

These messages should never appear; they represent an internal
problem in Neuralyst and indicate that an invalid value was
passed to the Genetic Supervisor. Other causes could include
accidental changes made to the data Neuralyst stores in the
Working Area.

data in ReloadPop

This message should never appear; it represents an internal
problem in Neuralyst and indicates that an invalid value was
passed to the Genetic Supervisor. Other causes could include
accidental changes made to the data Neuralyst stores in the
Working Area.

parameter in InitSuper
parameter in InitPop
parameter in TrainNextSchema
parameter in GenNextPop
parameter in ReloadPop

This message should never appear; it represents an internal
problem in Neuralyst and indicates that an invalid value was
passed to the Genetic Supervisor. Other causes could include
accidental changes made to the data Neuralyst stores in the
Working Area.

Blank flag column invalid

This message should never appear; it represents an internal
problem in Neuralyst and indicates that an invalid column was
created.

Appendix B Error Messages



Call Init before InitSuper

Call InitSuper before InitPop

Call InitPop before TrainNextSchema
Call InitPop before GenNextPop

This message should never appear; it represents an internal
problem in Neuralyst and indicates that the neural network was
not set up before the Genetic Supervisor was called or that the
Genetic Supervisor was not called in the proper sequence.

Can't have more than one MIN row
Can't have more than one MAX row
Can't have more than one SYMBOL row

These messages will appear if more than one row of that type was
marked in the Mode Flag column.

Can't set symbols before Init

This message should never appear; it represents an internal
problem in Neuralyst and indicates that a column was
transferred before a network was initialized.

Changing the activation function or calculation method will
reinitialize the network, causing any learning done so far to be
forgotten. Proceed?

This warning appears if you are changing the activation function
type or gain or the calculation method when using the
Set Enhanced Parameters command. It allows you to confirm
your intentions.

Cheshire Engineering Corporation prefers that this file be called
NEURLYST.XLM. Windows only

This message appears when Neuralyst is loaded if the
NEURLYST.XLM file has been copied or renamed.

Cheshire Engineering Corporation prefers that this file be called
Neuralyst. Macintosh only

This message appears when Neuralyst is loaded if the Neuralyst
file has been copied or renamed.

Appendix B Error Messages 169



170

Do Set Genetic Parameters first.

This message appears if an attempt is made to execute
Run Genetic Supervisor before Set Genetic Parameters
has initialized the Genetic Supervisor state.

Do Set Mode Flag Column first.

This message appears if an attempt is made to execute
Set Mode Rows before Set Mode Flag Column has initialized
the location of the Mode Flag column.

Do Set Rows first.

This message appears if an attempt is made to execute
Set Mode Rows before Set Rows has initialized the range of
defined rows.

Establish input columns before InitSuper.
Establish gap column before InitSuper.
Establish mode flag column before InitSuper.
Establish target columns before InitSuper.

This message should never appear; it represents an internal
problem in Neuralyst and indicates that the neural network was
not set up before the Genetic Supervisor was called.

Failed to translate in SetColumnEx.

This message appears if the symbol translator failed to identify
or parse the symbols present in a column.

Generate Min values for currently defined Input and Target
columns?
Generate Max values for currently defined Input and Target
columns?

These messages appear after a Set Mode Rows command has
established a Min or Max row. It allows you to confirm an
operation to automatically generate Min or Max values based on
data defined previously with Set Rows, Add Input Columns,
and Add Target Columns. These values will overwrite any data
currently in the Min or Max fields of the applicable columns.

Appendix B Error Messages



Genetic Supervisor data may not be compatible with data saved on
the worksheet. Do Set Genetic Parameters to reinitialize.

This message appears if an attempt is made to execute
Run Genetic Supervisor and an event has occurred which
makes the Genetic Supervisor state inconsistent with the neural
network model. Such events include retrieving an optimized
neural network configuration from a prior Genetic Supervisor
run, as well as the following commands:

Set Rows,

Add Input Column,

Add Target Column,

Add Output Column,

Set Mode Flag Column, and

Set Network Size.

Hyperbolic activation function can only be used with Floating
Point calculation mode.

This message appears after the Set Enhanced Parameters
dialog box if the Hyperbolic activation function and Fixed Point
calculation method were chosen at the same time.

I1Tegal value. A1l values must be > 0.

This message appears after the second Set Network Size dialog
box if one or more of the layers has been given a number of
neurons which is negative or zero.

I1Tegal value. Crossovers must be between 0 and 10 and Mutation
Rate must be between 0 and 1.

This message appears after the Set Genetic Parameters dialog
box if you have an illegal value for the Crossovers or Mutation
Rate fields.

I1Tegal value. Gain and Threshold values must be >= 0.

This message appears after the Set Enhanced Parameters
dialog box if you have an illegal value for the function gain or zero
threshold fields.

Appendix B Error Messages 17 1



I11egal value. Input Inclusion Rate must be > 0 and <= 1.

This message appears after the Set Genetic Parameters dialog
box if you have an illegal value for the input column Inclusion
Rate field.

I11egal value. Learning Rate and Momentum must be between 0 and
1 and Input Noise must be between 0 and 0.1.

This message appears after the Set Genetic Parameters dialog
box if you have an illegal value for Learning Rate, Momentum or
Input Noise fields.

I17egal value. Mode Flag type not recognized.

This message appears if an invalid entry was made in a Mode
Flag field.

I11egal value. Network structure must be between 2 and 6 Tayers.

This message appears after the Set Genetic Parameters dialog
box if you have an illegal value for the network Max Layers field.

I17egal value. Number of hidden Tayer neurons must be > 0 for the
layers specified and = 0 for the layers above the number of max
layers specified. Remember, hidden Tlayers plus 2 (input and
output Tayers) equals max layers.

This message appears after the Set Genetic Parameters dialog
box if you have an illegal value for a Layer n Neuron Limit field.

I11egal value. Number of rows per pattern must be at least 1 and
less than the total number of rows.

This message appears after the Set Rows dialog box if you have
an illegal value for the number of rows per pattern.

IT1egal value. % (percent) must be between 0 and 100.

This message appears after the Select Data Mode dialog box if
you have an illegal value for the % field.

Appendix B Error Messages



I11egal value. Population Pool Size must be > 0 and < 380.

This message appears after the Set Genetic Parameters dialog
box if you have an illegal value for the Pool Size field.

I1Tegal value. Rows to shift per pattern must be at least 1.

This message appears after the Set Rows dialog box if you have
an illegal value for the number of rows to shift.

I1Tegal value. The first five values must be in the range from 0
to 1; Epochs per Update must be > 0; and Epoch Limit, Time Limit,
and Error Limit must be >= 0.

This message appears after the dialog box of the
Set Network Parameters command, if one or more entries is
out of the legal range.

Inconsistent input column count in Genetic Supervisor data.

This message should never appear; it represents an internal
problem in the Neuralyst software. Other causes could include
accidental changes made to the data Neuralyst stores in the
Working Area.

Incorrect index

Incorrect type

Incorrect column size
Incorrect column width
Incorrect weight array size
Incorrect network size

These messages should never appear; they represent an internal
problem in the Neuralyst software. Other causes could include
accidental changes made to the data Neuralyst stores in the
Working Area.

Initial Timit must range from 0 to 16.

This message appears after the Reset Weights dialog box if the
value for the initial weight limit is out of range.

Appendix B Error Messages 173



Initialize or Reload the worksheet.

You have given a Neuralyst command before any worksheet has
been specified with the Init Working Area or Reload Network
commands. Use one of those commands and then try again.

Input column <column name> is bad.

This message indicates that Neuralyst has found bad data in the
specified column. Check that column and check the rows that
have been set (look in the Working Area to see the row limits).
Make sure there is only numeric or valid symbolic data in that
area.

Input column Tist is invalid. Please re-enter.

This message appears after the Edit Column Lists dialog box if
Neuralyst wasn't able to interpret the Input column list entry. A
legal entry looks like a series of one or two letter column names
separated by spaces and/or commas.

Insufficient memory (N).

N is a number in the range 1 through 11 which is used internally
by Neuralyst development teams for debugging. This message
means that your system doesn’t have enough memory to handle
the network and data sizes that you have chosen.

Insufficient memory in Genetic Supervisor (N).

N is a number in the range 1 through 12 which is used internally
by Neuralyst development teams for debugging. This message
means that your system doesn’t have enough memory to handle
the data structures needed to manage the Genetic Supervisor.

Invalid Column Type

This message should never appear; it represents an internal
problem in Neuralyst and indicates that a column was incorrectly
specified.

Appendix B Error Messages



Invalid column Tist, please re-enter.

This message may appear after the Edit Column Lists dialog
box if Neuralyst wasn't able to interpret one of the column list
entries. A legal entry looks like a series of one or two letter column
names separated by spaces and/or commas.

Library file Neuralyst Lib is bad. Macintosh only.

This message should never appear. It indicates that the library
file Neuralyst Lib has been corrupted in some way. Try
re-installing the software from the distribution diskette.

Macro error at cell: NEURLYST.XLM!<Cell ID> Windows only.

This message should never appear; it represents an internal
problem in the Neuralyst software. Other causes could include
accidental changes made to the data Neuralyst stores in the
Working Area. Press the button labeled “Halt” to remove this
message.

Macro error at cell: Neuralyst!<Cell ID> Macintosh only.

This message should never appear; it represents an internal
problem in the Neuralyst software. Other causes could include
accidental changes made to the data Neuralyst stores in the
Working Area. Press the button labeled “Halt” to remove this
message.

Maximum number of rows is 6550.

Min

Min

Some currently supported versions of Excel allow arrays of only
6550 elements. This limits Neuralyst to allowing only 6550 rows
in the Set Rows command. Future versions of Excel and/or
Neuralyst may overcome this restriction.

or Max symbols must be in the Symbol List.

This message indicates that a Min and/or Max symbol was
defined which was not also defined in the Symbol List.

cannot be >= Max.

This message indicates that a Min value was entered which was
greater than the entered Max value.

Appendix B Error Messages 175



176

Min symbol must precede Max symbol and Min and Max symbols must
be different.

This message indicates that a Min symbol was entered which has
higher or equal precedence to the Max symbol as defined by order
of entry in the Symbol List.

Missing Symbol

This message indicates that an incorrectly structured symbol list
was passed to symbol initialization.

Mode Flag column field is invalid. Please re-enter.

This message appears after the Edit Column Lists dialog box if
Neuralyst wasn't able to interpret the Mode Flag column entry.
A legal entry is a one or two letter column name.

Mode Flag column is bad.

This message indicates that Neuralyst has found bad data in the
Mode Flag column. Check that column and check the rows that
have been set (look in the Working Area to see the row limits).
Make sure there are only blanks or TRAIN, TEST, MIN, MAX, Or
SYMBOL values in that area.

Mode is set to optimize epoch count. Fitness Timit represents RMS
error and should be between 0 and 1.

This message appears after the Set Genetic Parameters dialog
box if the range of the Fitness Limit field does not match the
Fitness Criteria selected.

Mode is set to optimize RMS error. Fitness limit represents
epochs and should be an integer >= 1.

This message appears after the Set Genetic Parameters dialog
box if the range of the Fitness Limit field does not match the
Fitness Criteria selected.

Appendix B Error Messages



Network must be completely set up before Genetic Supervisor data
can be initialized.

This message appears after the Set Genetic Parameters dialog
box if a neural network model has not been set up in all normal
respects first.

No data is available to create a Training Error Plot.

No training error history is available for plotting. This can occur
if: a worksheet has just been initialized with an
Init Working Area command and no training has occurred yet;
a Set Network Size or Reset Weights command was issued and
no training has occurred yet; or if a worksheet has just been
reloaded with a Reload Network command (there is no training
error history saved between reloads).

Non-blank value in a "blank" row for input column <name>
Non-blank value in a "blank" row for target column <name>
Non-blank value in a "blank" row for Mode Flag column <name>

Neuralyst skips blank rows in your data area. The determination
of whether a row is blank or not is done based on values in the
first input column. This message indicates that it found a
partially blank row, one where the first input column was blank
but some other column was not. The message tells you which
column had the non-blank value.

Not a single column array.

This message should never appear; it represents an internal
problem in Neuralyst and indicates that a column was incorrectly
specified.

Not enough room to save weights. Try reducing the size of your
network or relocating the Working Area higher on the worksheet.

This message appears after a Set Network Size command if the
space from the Working Area to the bottom of the worksheet has
insufficient room to save all the weights.

Appendix B Error Messages 177



Number of Tayers must be 2-6.

This message appears after the first Set Network Size dialog
box if the number of layers entered is outside of the range
supported by Neuralyst. Two layers is the minimum and six is
the maximum currently supported.

Number of target columns must equal number of output columns.

This message appears after the dialog box of the
Edit Column Lists command, if the number of columns in the
Target column list is different from the number in the Output
column list.

Number of weights exceeds Neuralyst Timit of 131,008. Try
reducing the size of your network, especially the size of the
largest layer.

This warning appears if you are changing the network size using
the Set Network Size command. The total number of weights
in the network is limited to 131,008 in this version of Neuralyst.
The number of weights in a network is calculated by taking each
layer except the last, and multiplying one plus the number of
neurons in that layer times the number of neurons in the next
layer, then adding those products. For example, a 4 layer network
with sizes of 15, 20, 10, 5 would have 16*20 + 21*10 + 11*5 or 585
weights.

Only one column may be selected.

This message appears after the Edit Mode Lists command if
more than one column was entered as a selection.

Only one row may be selected.

This message appears after the Set Mode Row command if more
than one row was entered as a selection.

Qutput column too large.

This message should never appear; it represents an internal
problem in Neuralyst and indicates that a column was incorrectly
specified.

178 Appendix B Error Messages



Qutput column 1ist is invalid. Please re-enter.

This message appears after the Edit Column Lists dialog box if
Neuralyst wasn't able to interpret the Output column list entry.
A legal entry looks like a series of one or two letter column names
separated by spaces and/or commas.

Randomization setting must be greater than zero.

This message occurs after the Reset Weights dialog box if User
Set randomization has been selected, and the User Set value is
invalid.

Reload macro sheet NEURLYST.XLM. Windows only.

This message indicates that something went wrong when
Neuralyst originally loaded. Try exiting Excel and re-starting
Neuralyst.

Reload macro sheet Neuralyst. Macintosh only.

This message indicates that something went wrong when
Neuralyst originally loaded. Try exiting Excel and re-starting
Neuralyst.

Select worksheet <your worksheet name> first.

The worksheet which is currently selected is not the one you have
specified for Neuralyst. Bring that worksheet to the front, or else
use the Reload Network command on the front worksheet if you
want Neuralyst to change over to using that one.

Selected column has not been defined as an Input or Target
column.

This message indicates that the column selected for Symbol
and/or Min/Max entry with Edit Mode Lists is not currently
defined as an Input or Target column.

Appendix B Error Messages 179



180

Selected row not in current row range. Include this row with Set
Rows Tater.

This message indicates that the row defined by a Set Mode Rows
command is not currently in the range of rows defined by the
Set Rows command. It will not be used until a Set Rows is done
with the row included in the row range.

Selection must be at Teast two rows high.

This message appears if you have selected just one row for the
Set Rows command. Neuralyst requires at least two rows to be
specified.

Set the network size. That will randomize the weights, too.

This message appears if you give the Reset Weights command
at a time when the network size still needs to be specified. What
you should do is to give the Set Network Size command, which
will also randomize the weights.

Symbol is neither blank nor a string.

This message appears if non-blank or non-string data is present
in the SYMBOL row.

Symbol List must have at least two symbols, separated by a comma.

This message appears if a Symbol List was entered that has less
than two symbols.

Set up all rows and columns first.

This message appears if you give the Select Data Mode or
Set Network Size commands before you have finished setting
up the rows and columns. Either the number of rows is zero, or
the number of Input or Output columns is zero, or the number of
Target columns is not equal to the number of Output columns, or
the Mode Flag column has not been set. Fix things with the
Set Rows and/or the column commands, and try again.

Appendix B Error Messages



Target column <column name> is bad.

This message indicates that Neuralyst has found bad data in the
specified column. Check that column and check the rows that
have been set (look in the Working Area to see the row limits).
Make sure there is only numeric data in that area.

Target column list is invalid. Please re-enter.

The
The
The
The

This message appears after the Edit Column Lists dialog box if
Neuralyst wasn't able to interpret the Target column list entry.
A legal entry looks like a series of one or two letter column names
separated by spaces and/or commas.

network size must be set before training can begin
network size must be set before running

network size must be set before histogramming
network size must be set before unpacking

This message appears if you give the Train Network,
Run/Predict with Network, Histogram Weights, or
Unpack Weights commands at a time when the network size
still needs to be set. Use the Set Network Size command and
then try again.

This mode row was previously defined. Change to new row?

Thiswarning appears if Set Mode Rows is used to set a row type
that was already set. It allows you to confirm your intentions.

This will cause any genetic training state to be lost! Proceed?

This warning appears if you are initializing the supervisor state
with the Set Genetic Parameter command. It allows you to
confirm your intentions.

This will cause any Tearning done so far to be forgotten.
Proceed?

This warning appears when you give the Reset Weights
command. It allows you to confirm your intentions.

Appendix B Error Messages 18 1



182

This will clear a large area to the right and down from the cell
you have selected. Are you sure you have chosen an area that it's
0K to clear?

This warning appears whenever you give the Init Working Area
command. It allows you to confirm your intentions.

This will overwrite your current network structure and other
parameters. Proceed?

This warning appears if you confirm retrieval of an optimized
neural network configuration after a Run Genetic Supervisor
command. It allows you to confirm your intentions.

This will randomize the network weights, causing any learning
done so far to be forgotten. Proceed?

This warning appears if you are changing the network size using
the Set Network Size command. It allows you to confirm your
intentions.

This will require you to change the network size, forgetting any
Tearning done so far. Proceed with the change? [Proceed with the
column addition?, Proceed with the column changes?]

This warning appears when you are about to make a change
which will require the network size to change. You are being
warned that proceeding with that change will cause any learning
done so far to be forgotten. Changes which will lead to this
message are: changing the number of rows per pattern in the
Set Rows command, or changing the set of Input, Output, or
Target columns with the column commands.

Appendix B Error Messages



This worksheet is set up for an old version of Neuralyst. Should
it be updated for the new version?

This message occurs when you give the Reload Network
command for a worksheet which was set up under a previous
version of Neuralyst. In order for your worksheet to be used with
the new version, Neuralyst will automatically update the
worksheet, preserving your data. Confirm with OK if you want
this to be done; use Cancel if you don't want the worksheet
changed (which will mean that it can’t be used with this version
of Neuralyst).

Total weights exceeded 131,008 Tlimit.

This warning appears if you are changing the network size using
the Set Network Size command. The total number of weights
in the network is limited to 131,008 in this version of Neuralyst.
The number of weights in a network is calculated by taking each
layer except the last, and multiplying one plus the number of
neurons in that layer times the number of neurons in the next
layer, then adding those products. For example, a 4 layer network
with sizes of 15, 20, 10, 5 would have 16*20 + 21*10 + 11*5 or 585
weights.

Unable to find macro sheet NEURXTRA.XLM [TML.XLM]. Please make
sure it is installed in the Neuralyst directory and try again.
Windows only.

Neuralyst keeps some of its functions in separate Excel macro
sheets which should be in the same directory as NEURLYST.XLM.
This message indicates that it was not able to find one of these
macro sheets there. Check to see that the file named in the
message was properly installed into the Neuralyst directory.

Appendix B Error Messages 183



184

Unable to find macro sheet Neuralyst Inits [TML]. Please make
sure it is installed in the Neuralyst folder and try again.
Macintosh only.

Neuralyst keeps some of its functions in separate Excel macro
sheets which should be in the same folder as Neuralyst. This
message indicates that it was not able to find one of these macro
sheets there. Check to see that the file named in the message was
properly installed into the Neuralyst folder.

Unable to Toad library file NEUR14.DLL. You must either copy that
file into a directory on your search path, or start Excel by
using the Neuralyst icon in Program Manager. Windows only.

Neuralyst relies on the external library file NEUR14.DLL. This
message appears if it was unable to locate that file. Make sure
you start Neuralyst from a directory which includes both the
NEURLYST.XLM macro sheet and the NEUR14.DLL file, which can be
done by using the Neuralyst icon in the Program Manager.
Alternatively, you can put NEUR14.DLL into your Windows home
directory or any directory on your search path, which will
guarantee that Neuralyst will be able to find it.

Unable to load Tibrary file Neuralyst Lib. Be sure it is in the
Neuralyst folder. Macintosh only.

Neuralyst relies on the external library file Neuralyst Lib. This
message appears if it was unable to locate that file. Make sure
you start Neuralyst from a folder which includes both the
Neuralyst macro sheet and the Neuralyst Lib file.

Value greater than Max in input column
Value greater than Max in target column
Value less than Min in input column
Value less than Min in target column

This message indicates that a value in the designated column
exceeded the set Min or Max values, modified by Scaling Margin,
for that column.

Appendix B Error Messages



Value out of range in input column
Value of of range in target column

This message should never appear; it represents an internal error
in Neuralyst and indicates that numeric representation of an
input, target or output exceeds the range of defined symbols.

When optimizing epoch count, it is generally necessary to set a
Time Limit in Set Network Parameters to prevent untrainable
networks from tying up testing. Proceed?

This message appears if you give the Run Genetic Supervisor
command with no Time Limit set and Fitness Criteriaset to Train
Epochs or Test Epochs. It allows you to confirm your intentions.

Worksheet <your worksheet name> must be initialized.

This message appears if you give the Reload Network command
for aworksheet which has never been prepared for Neuralyst with
the Init Working Area command. Use Init Working Area to
set up the worksheet for Neuralyst.

You must first name this worksheet (by saving it).

This message appears if you give the Init Working Area
command for a worksheet which has never been saved (such as
SHEET1). Neuralyst can’'t work on such a worksheet. Save the
worksheet and give it a name and then you will be able to use the
Init Working Area command.

You must make a continuous selection before using this function.

This message appears for the Set Rows command, or any of the
Add Columns commands, if you have selected a region that is
not continuous before giving the command. Neuralyst can only
work with continuous regions for these commands.

Appendix B Error Messages 185



186 Appendix B Error Messages



Appendix C
Cheshire Customer Service

If you have problems installing or running Neuralyst, please review
the procedures and error messages discussed in this guide,
particularly Appendices A and B.

If you are still not able to get Neuralyst to work, please note down all
information relating to the failure and have it ready at hand. Then
call Cheshire Customer Service at (626)351-5493 (or FAX
(626)351-8645). Cheshire Customer Service is available Monday to
Friday between the hours of 0900 to 1700 Pacific Time.

Due to the highly involved and widely varying nature of individual
neural network models, Cheshire Customer Service can only answer
questions on general usage, incorrect operation and Neuralyst
generated faults and errors. Cheshire Customer Service cannot
answer specific questions on developing neural network models nor
will it be able to debug neural network models that you may have
developed.

If you need help in developing or debugging neural network models
then please write Cheshire at:

Cheshire Engineering Corporation
650 Sierra Madre Villa Avenue, Suite 201
Pasadena, CA 91107

Cheshire can provide full tutorial and design services for Neuralyst
and development of custom neural network designs. These services
are provided independently of its Customer Service operations for
Neuralyst.

Appendix C Cheshire Customer Service 187



188 Appendix C Cheshire Customer Service



Appendix D
Neuralyst Specifications

D.1 Windows Specifications

Windows Version
3.1 or later.
Excel Version
4.0 or later.

CPU or Memory Requirements

Any system able to run Windows with Excel. More memory will

allow larger neural networks to run.
Maximum Network Size
Greater than 131,000 weights.
Maximum Number of Neural Network Layers
Six.
Maximum Number of Neurons per Layer
Limited by Maximum Network Size.
Maximum Number of Input Columns

Limited only by memory and worksheet size.

D.1 Windows Specifications

189



190

Maximum Number of Output Columns
Limited only by memory and worksheet size.
Maximum Number of Rows
6550 per Input or Output Column.
Maximum Number of Rows per Pattern Window
Limited by Maximum Number of Rows.
Neural Network Computation Rate
Sample performance (in Connections per Second):

386DX-40 (est.)  486DX-33 486DX2-66 Pentium-60

Fixed/Small Training 71,000 149,000 262,000 440,000
Fixed/Small Testing 221,000 465,000 836,000 1,363,000
Fixed/Huge Training 63,000 133,000 234,000 370,000
Fixed/Huge Testing 201,000 423,000 749,000 1,147,000
Float/Small Training 22,000 48,000 92,000 166,000
Float/Small Testing 69,000 145,000 269,000 489,000
Float/Huge Training 22,000 47,000 87,000 153,000
Float/Huge Testing 66,000 142,000 265,000 462,000

Connections per second is equivalent to a single weight/input
computation for a neuron. Computation rates listed are examples
only. Other computers will be slower or faster in proportion to
their clock rates, processor type and other system characteristics.

Small applies to fixed-point networks having 10,920 or fewer
connections (weights) and to floating-point networks having 4096
or fewer weights; larger networks are huge.

D.1 Windows Specifications



D.2 Macintosh Specifications

Maximum Network Size
Greater than 131,000 weights.
Maximum Number of Neural Network Layers
Six.
Maximum Number of Neurons per Layer
Limited by Maximum Network Size.
Maximum Number of Input Columns
Limited only by memory and worksheet size.
Maximum Number of Output Columns
Limited only by memory and worksheet size.
Maximum Number of Rows
6550 per Input or Output Column.
Maximum Number of Rows per Pattern Window
Limited by Maximum Number of Rows.
Excel Version
4.0 or later.
CPU or Memory Requirements

Any system able to run Excel. More memory will allow larger
neural networks to run.

D.2 Macintosh Specifications 191



Neural Network Computation Rate
Sample performance (in Connections per Second):

68030-33 68040-25 PowerPC-60 PowerPC-60

(est.) (est.) Emulated (est.) Native (est.)
Fixed-point Training 82,000 209,000 104,000 682,000
Fixed-point Testing 256,000 650,000 325,000 2,112,000
Floating-point Training 31,000 79,000 39,000 257,000
Floating-point Testing 91,000 232,000 116,000 757,000

Connections per second is equivalent to a single weight/input
computation for a neuron. Computation rates listed are examples
only. Other computers will be slower or faster in proportion to
their clock rates, processor type, and other system characteristics.

192 D.2 Macintosh Specifications



Appendix E
Macro Interface Specifications

E.1 Neuralyst/Excel Macro Interface

Neuralyst can be controlled by Excel macros on Windows or
Macintosh. The list of accessible Neuralyst menu items and
corresponding macro names are:

Menu Item Macro Name
Reload Network MacroReloadNetwork
Train Network MacroTrainNetwork
Run/Predict with Network MacroRunNetwork
Plot Training Error MacroPlotError
Histogram Weights MacroHistChart
Unpack Weights MacroUnpackWeights

Note: When using these macro commands, prepend the macro name
with “NEURLYST.XLM!” on Windows and “Neuralyst!” on Macintosh.

Other Neuralyst menu items do not have a correspondence through
the macro interface since they use dialog boxes to interface and
capture settings and parameters and there is no way to set dialog
boxes from macros. However, many menu items can be simulated by
writing directly to the Working Area and then using the
MacroReloadNetwork command to get Neuralyst to accept the new
settings.

E.1 Neuralyst/Excel Macro Interface 193



For example, to change the row limits, write directly to the First Row
and or Last Row cells in the Working Area. Let's say the First Row
cell is in “R7C16" and you wish to set the value to 12, then use:

FORMULA(12, "R7C16")

Then give the MacroReloadNetwork command. (A more convenient
method to reference Working Area cells is described in the next
section.)

Most other parameters can be changed by this method. A useful
command that is not accessible in this way is the Set Network Size
command. Set Network Size opens a dialog box, fills in values, and
then executes a Neuralyst DLL function to generate values to
initialize the Working Area. There is no way to force this to happen
from the macro interface. Fortunately, this command does not have
to be given frequently. It is also not possible to call the Genetic
Supervisor from the macro interface.

E.2 Referencing the Working Area

194

It is not convenient to count cells on each worksheet and generate
“RC” references for the Neuralyst Working Area when setting
parameters. Fortunately, Neuralyst provides a reference mechanism
for dealing with this. The top-left corner cell of the Neuralyst Working
Area is referenced by the name NWTL as follows:

SET.NAME("NWTL", TEXTREF ("NETSHEET.XLS! NWTL"))

Where NETSHEET.XLS is replaced by the name of your worksheet. This
sets the local name, NWTL, on your macro sheet to point to the
Working Area of your worksheet.

The other cells can be referenced from this location. Here is a list of
offsets:

Parameter Offset

RMS Error OFFSET(NWTL,4,0)
Number of Data Items OFFSET(NWTL,5,0)
Number Right OFFSET(NWTL,6,0)

E.2 Referencing the Working Area



Parameter

Number Wrong
Training Epochs
Learning Rate
Momentum

Input Noise
Training Tolerance
Testing Tolerance
Epochs per Update
Epoch Limit

Time Limit

Error Limit

First Row

Last Row

Number, Of Rows
Rows/Pattern

Row, Offset
Function

Function Gain
Force Zero

FZ Threshold
Adaptive LR
Calculation Method
Scaling Margin
#lnput Columns
Input Columns (list)
#Target Columns
Target Columns (list)
#Output Columns
Output Columns (list)
Mode Flag Column
Min Scale Row
Max Scale Row
Symbol Row
Generation Count
Structure Count
Least RMS Error
Least Epochs
Inclusion Rate

Max Layers

Offset

OFFSET (NWTL,7,0)
OFFSET (NWTL, 10,0)
OFFSET (NWTL, 13,0)
OFFSET (NWTL,14,0)
OFFSET (NWTL, 15,0)
OFFSET (NWTL, 16,0)
OFFSET (NWTL,17,0)
OFFSET (NWTL, 18,0)
OFFSET (NWTL,19,0)
OFFSET (NWTL,20,0)
OFFSET (NWTL,21,0)
OFFSET (NWTL,5,4)
OFFSET (NWTL , 6,4)
OFFSET (NWTL,7,4)
OFFSET (NWTL,8,4)
OFFSET (NWTL,9,4)
OFFSET (NWTL,13,4)
OFFSET (NWTL,14,4)
OFFSET (NWTL, 15,4)
OFFSET (NWTL, 16,4)
OFFSET (NWTL,17,4)
OFFSET (NWTL, 18,4)
OFFSET (NWTL,19,4)
OFFSET (NWTL,6,7)
OFFSET (NWTL,8,7)
OFFSET (NWTL, 6,9)
OFFSET (NWTL,8,9)
OFFSET (NWTL,6,11)
OFFSET (NWTL,8,11)
OFFSET (NWTL,6,13)
OFFSET (NWTL,8,13)
OFFSET (NWTL,10,13)
OFFSET (NWTL,12,13)
OFFSET (NWTL,24,0)
OFFSET (NWTL,25,0)
OFFSET (NWTL, 26,0)
OFFSET (NWTL,27,0)
OFFSET (NWTL,24,4)
OFFSET (NWTL ,25,4)

E.2 Referencing the Working Area 195



Parameter Offset

L2 Neuron Limit OFFSET(NWTL,26,4)
L3 Neuron Limit OFFSET(NWTL,27,4)
L4 Neuron Limit OFFSET(NWTL,28,4)
L5 Neuron Limit OFFSET(NWTL,29,4)
Min Learning Rate OFFSET(NWTL,30,4)
Max Momentum OFFSET(NWTL,31,4)
Max Input Noise OFFSET(NWTL,32,4)
Population Size OFFSET(NWTL,33,4)
Population Mode OFFSET(NWTL,34,4)
Crossovers OFFSET(NWTL,35,4)
Mutation Rate OFFSET(NWTL,36,4)
Fitness Criteria OFFSET(NWTL,37,4)
Fitness Limit OFFSET(NWTL,38,4)

Genetic State Information OFFSET(NWTL,24,13)

By using OFFSET(NWTL,R,C) in a macro function, a reference will be
returned pointing to the desired cell.

E.3 Windows DDE Interface

Neuralyst can also be controlled through external programs via DDE
(Dynamic Data Exchange) on Windows. The technique is similar to
using DDE to control basic Excel functions. In each case, the DDE
Execute function is used. The format of a string sent using an Execute
function is always:

[<Command Name>(<Arguments>)]

<Command Name> should be the name of a command to run and
<Arguments> should be the arguments, separated by commas, to the
command. If there are no arguments, you still need a pair of
parentheses after the command name. For example:

[BEEP()]
[COLUMN.WIDTH(15)]

196 E.3 Windows DDE Interface



Neuralyst commands may be executed by using Excel’s RUN function.
The format is like this:

[RUN("NEURLYST.XLM!<Neuralyst Macro Name>")]

<Neuralyst Macro Name> should be replaced by one of the
documented commands listed in Section E.1. As with Excel macros,
not all Neuralyst commands are accessible through this interface
since Neuralyst uses many dialog boxes to interface with the user.
However, most functions can be simulated by writing directly to the
Working Area and then using MacroReloadNetwork to get Neuralyst
to accept the new values. The technique can be used with DDE just
as was described above for an Excel macro.

Note that some Neuralyst commands can take a long time,
particularly the MacroTrainNetwork command. Excel will not return
the DDE “Acknowledge” message until the command has finished.
Code which expects to receive the Acknowledge within a short time
will therefore not work. However, waiting for the Acknowledge is safer
since it guarantees that the command has finished.

E.4 Macintosh Apple Events Interface

It is also possible to control Neuralyst through Excel 4.0's Apple
Events Interface on the Macintosh with System 7.0. For details,
reference the Microsoft Excel 4.0 Software Development Kit.

E.4 Macintosh Apple Events Interface 197



198 E.4 Macintosh Apple Events Interface



Appendix F
Reading List & Bibliography

Anderson, J.A. & Rosenfeld, E., (eds); Neurocomputing:
Foundations of Research; MIT Press; Cambridge, MA; 1988.

Anderson, J.A., Pellionisz, A. & Rosenfeld, E., (eds);
Neurocomputing 2: Directions for Research; MIT Press;
Cambridge, MA; 1990.

Arbib, M.A.; Brains, Machines, and Mathematics (2nd Ed);
Springer-Verlag; New York, NY; 1987.

Buckles, B. P. & Petry, F. E.; Genetic Algorithms; IEEE Computer
Society Press, Los Alamitos, CA; 1992.

Butler, C. & Caudill, M.; Naturally Intelligent Systems; MIT
Press; Cambridge, MA; 1990.

Caudill, Maureen; Neural Network Primer; Miller Freeman
Publications; San Francisco, CA; 1990.

Churchland, P.S. & Sejnowski, T.J.; The Computational Brain;
MIT Press; Cambridge, MA; 1992.

Dayhoff, Judith; Neural Network Architectures; Van Nostrand
Reinhold; New York, NY; 1990.

Deboeck, Guido (Ed); Trading on the Edge: Neural, Genetic, and
Fuzzy Systems for Chaotic Financial Markets; John Wiley &
Sons; New York, NY; 1994,

Appendix F  Reading List & Bibliography 199



200

Defense Advanced Research Projects Agency (DARPA); DARPA
Neural Network Study; AFCEA International Press; Fairfax, VA,
1988.

Goldberg, David E.; Genetic Algorithms in Search, Optimization
and Machine Learning; Addison-Wesley; Reading, MA; 1989.

Grossberg, Stephen (Ed); Neural Networks and Natural
Intelligence; MIT Press; Cambridge, MA; 1988.

Hecht-Nielson, Robert; Neurocomputing; Addison-Wesley
Publishing Co.; Reading, MA; 1990.

Holland, John H.; Adaptation in Natural and Artificial Systems;
MIT Press; Cambridge, MA; 1992.

Kosko, Bart; Neural Networks and Fuzzy Systems; Prentice-Hall;
Englewood Cliffs, NJ; 1992.

Koza, John R.; Genetic Programming: On the Programming of
Computers by Means of Natural Selection; MIT Press;
Cambridge, MA; 1992.

Lau, C. & Widrow, B.; Special Issue on Neural Networks, | & I1;
Proceedings of the IEEE; Vol.78, No. 9 & 10; September & October
1990.

Maren, A., Harston, C., & Pap, R.; Handbook of Neurocomputing
Applications; Academic Press; San Diego, CA; 1990.

Mehra, P. & Wah, B.W.; Artificial Neural Networks: Concepts
and Theory; IEEE Computer Society Press; Los Alamitos, CA; 1992.

Minsky, M. & Papert, S.; Perceptrons: An Introduction to
Computational Geometry; MIT Press; Cambridge, MA; 1969.

McClelland, J.L. & Rumelhart, D.E. (Eds); Parallel Distributed
Processing: Explorations in the Microstructure of Cognition,
I & I1; MIT Press; Cambridge, MA; 1986.

McClelland, J.L. & Rumelhart, D.E.; Explorations in Parallel
Distributed Processing: A Handbook of Models, Programs and
Exercises; MIT Press; Cambridge, MA; 1988.

Appendix F  Reading List & Bibliography



Pao, Yoh-Han; Adaptive Pattern Recognition and Neural
Networks; Addison-Wesley Publishing Company; Reading, MA;
1989.

Trippi & Turban (Eds); Neural Networks in Finance and
Investing; Probus Publishing; Chicago, IL; 1993.

Vemeri, V (ed); Artificial Neural Networks: Theoretical
Concepts; Computer Society Press of the IEEE; Washington, DC;
1988.

Appendix F  Reading List & Bibliography 201



202

Al Expert; Miller Freeman Publications; San Francisco, CA.

(An easy to read magazine on artificial intelligence technology for
small computers, with single and continuing article series on
neural networks starting from late 1987 to the present.)

IEEE Transactions on Neural Networks; Institute of Electrical and
Electronic Engineers, Inc.; New York, NY.

(A technical journal devoted exclusively to current research on
neural networks.)

Neural Networks; Pergamon Press; EImsford, NY.

(The Official Journal of the International Neural Network Society
— a technical journal devoted exclusively to current research on
neural networks.)

PC-AI; Publications; Phoenix, AZ.

(Another easy to read magazine on artificial intelligence
technology for small computers.)

Appendix F  Reading List & Bibliography



Appendix G
Trader’s Macro Library

G.1 Support for Technical Analysis

One of the more popular applications for Neuralyst is investment
analysis; in particular, the kind of investment analysis known as
technical analysis as demonstrated in the example DJIA.XLS {DJIA}.
Cheshire has included a Trader’'s Macro Library (TML) specifically
designed to help you set up your Neuralyst worksheet to integrate
neural network analysis and technical analysis.

[There is a vast literature on technical analysis and we will not
attempt to duplicate or summarize that information here; see
Section G.6 for some introductory references.]

The goal of technical analysis is to predict the future price movement
of equities, futures, or other investment instruments based solely on
historical price and volume data. TML recognizes and deals
specifically with data designated as one of the following types: Open,
High, Low, Close, Volume, and Open Interest. The first four are
price-related and the last two are volume-related.

You must obtain this data for the kind of equity, future, or investment
that you wish to analyze. This data may be obtained from the business
section of your daily paper, computer news services (such as
CompusServe or Dow Jones News Retrieval), or specialized investment
data services.

Once this data is obtained, it must be entered into an Excel worksheet,
organized so that the data are headed by columns labeled by one or
more of the names just listed, and with the respective data for each

G.1 Support for Technical Analysis 203



new day appended in succeeding rows. TML can then be used to add
and format additional columns that contain technical analysis
indicators selected by you and derived from the basic data.

G.2 Enabling and Disabling the Library

204

G.2.1 Enabling and Disabling in Windows

TML is an optional feature which can be enabled or disabled prior to
the execution of Neuralyst and Excel. To use TML the first time, it
must be enabled.

In order to enable TML, execute the command:
TMLON. EXE

from the Neuralyst directory while in DOS or Windows. The next time
Neuralyst is loaded, there will be a new command in the Neural
menu, Trader’s Macro Library.

In order to disable TML, execute the command:
TMLOFF.EXE

from the Neuralyst directory while in DOS or Windows. The next time
Neuralyst is loaded, the Trader’s Macro Library command in the
Neural menu will no longer be present.

Alternatively, renaming, moving, or deleting TML.XLM from the
Neuralyst directory will disable TML. Restoring it will enable TML.

If you have re-installed Neuralyst or have installed an updated
version of Neuralyst, you must give the TMLON. EXE command in order
for the new version of TML to be enabled.

G.2.2 Enabling and Disabling in Macintosh

TML is an optional feature which can be enabled or disabled prior to
the execution of Neuralyst and Excel. To use TML the first time, it
must be enabled.

G.2 Enabling and Disabling the Library



In order to enable TML change the name of the file called NoTML to TML.
The next time Neuralyst is loaded, there will be a new command in
the Neural menu, Trader’s Macro Library.

In order to disable TML, change the name of the file called TML to NoTML.
The next time Neuralyst is loaded, the Trader’'s Macro Library
command in the Neural menu will no longer be present.

If you have re-installed Neuralyst or have installed an updated
version of Neuralyst, you must be sure to remove your old TML file
before you change the name of the new NoTML file to TML. This will
ensure that Neuralyst uses the new version of TML.

G.3 Using the Library

All  TML operations are accessed through the
Trader’s Macro Library command in the Neural menu.

G.3.1 |Initializing the Library

If you use TML, the location of the Neuralyst Working Area is more
restricted than usual. When you use TML, the Neuralyst Working
Area must be to the right of your data, indicators, targets, outputs,
and Mode Flag column. When TML is in operation, it will make use
of some of the information kept in the Working Area and store some
of its internal data there. Because of this, after you create a
new worksheet that contains price data, you should
perform an Init Working Area command prior to executing
Trader’s Macro Library.

Once the Working Area has been defined, you may add columns for
indicators, targets, outputs, and Mode Flag column by using the
Edit Insert operation from Excel if you need to make additional
space. As with Neuralyst, if you insert columns after the column
configuration operations have been executed, you will need to use
Edit Column Lists to revise the column configuration.

TML requires that the data to be operated on and transformed into
indicators must be in columns headed by one of the following labels:
Open, High, Low, Close, Volume, or Open Interest (Ol for Open

G.3 Using the Library 205



206

Interest also works). The values in such columns must be numeric and
positive, but there is no restriction on the magnitude. Price data
quoted in points (Y42, V46, V8, and so on) must be converted to decimal
representations first.

One or more of these columns may be designated as inputs to TML by
selecting the cells containing the labels and then executing
Trader’s Macro Library. The TML dialog box will appear providing
a list of TML operations; each operation is preceded by a “pushbutton”
indicator. Select the Set TML Columns command and confirm OK.
This will cause TML to record the column or columns and associated
names for future operations.

After the columns have been set, select the rows containing price data,
excluding the label for the data, and then execute
Trader’s Macro Library. The TML dialog box will appear. Select
the Set TML Rows command and confirm OK. This will cause TML
to record the rows containing price data for future operations.

To summarize:
1. Start by creating a new worksheet.

2. Set aside columns to be used for price data and head them with
the proper labels.

3. Enter the price data in the respective columns.

4. Set aside as many other columns as may be needed to store the
desired number of indicators, targets, outputs, and so on.

5. Select a blank column to the right of this area and perform an
Init Working Area command.

6. Select the cells containing the labels for the columns containing
the price data, call the Trader’s Macro Library, and perform a
Set TML Columns command.

7. Select the rows containing the price data, call the
Trader’s Macro Library, and perform a Set TML Rows
command.

The worksheet is now ready for technical indicator creation by TML.

G.3 Using the Library



G.3.2 Creating a Technical Indicator

There are fourteen technical “indicators” supported (strictly speaking
Log, Delta, and Log-Delta are not indicators). These supported
indicators do not constitute a complete toolbox of technical analysis
indicators; however, they are some of the most popular and useful.

All TML indicators use one or more of the price data columns defined
previously. Eight of the fourteen indicators supported may derive
their inputs from any valid price data column. These indicators are:
Log, Delta, Log-Delta, Moving Average, Exponential Average, Moving
Average Oscillator, Momentum, and Rate-of-Change (ROC). Six of the
indicators supported have fixed inputs (fixed subset of Open, High,
Low, Close, and Volume) required by the definition of the indicator.
These are: Moving Average Convergence-Divergence (MACD), On
Balance Volume, Relative Strength Index (RSI), Stochastic Oscillator,
Volatility, and Williams’ Ultimate Oscillator.

Some indicators also allow the setting of one or more additional
parameters. These are: Moving Average, Exponential Average,
Moving Average Oscillator, Momentum, MACD, ROC, RSI, Stochastic
Oscillator, Volatility, and Ultimate Oscillator. The parameters are
described in the next section.

To create a technical indicator, select the column or columns that will
contain the results of the technical indicator computation. Then
execute Trader’s Macro Library. A dialog box will appear showing
the available TML operations. Select one of the items from the
Indicators section. If the indicator allows an input type to be selected,
then a dialog box listing the possible inputs will appear; select one of
these. If parameters are required to complete the definition of the
indicator, then the dialog box will contain fields allowing these
parameters to be set; enter the desired parameter values. If both an
input type may be selected and parameters may be set, then the dialog
box will have fields allowing both operations to be performed. When
the necessary entries have been made, confirm OK to complete the
operation.

TML will then create the indicator and store both the formulas and
the values in the designated column or columns.

G.3 Using the Library 207



208

G.3.3 Technical Indicators
These indicators are described below.

Log — calculates the logarithm of each value in the column selected
and places the results in the designated column.

Delta — calculates the difference between the current value and the
previous value in the column selected and places the results in the
designated column. The first row is blank since there is no previous
value.

Log-Delta — calculates the difference between the logarithms of the
current value and the previous value in the column selected and
places the results in the designated column. The first row is blank
since there is no previous value.

Moving Average — calculates moving average of the current and
preceding values for n rows in the column selected and places the
results in the designated column. The first n-1 rows are blank since
the moving average is not defined for these rows.

Exponential Average — calculates the exponential average places the
results in the designated column. The decay factor is entered as an
integer so that, when the formula for the exponential average is
created, itis calculated to be the corresponding fractional value which
approximates the smoothing characteristics of the moving average
value n. The initial value of the exponential average is set to the initial
value of the input data; this causes the first n-1 rows to be weighted
more than usual by that initial value. Because of this, you may wish
to skip the first n-1 rows when performing your analysis.

Moving Average Convergence-Divergence (MACD) — calculates the
exponential average of the difference between a fast and slow moving
average using the Close column and places the results in the three
designated columns. The first column contains the fast exponential
average, with period f, of the Close (traditionally a period of 12 days).
The second column contains the slow exponential average, with
period s, of the Close (traditionally a period of 26 days). The third
column contains a smoothed (another fast exponential, traditionally
9 days), with period K, difference of the first two columns. Since all

G.3 Using the Library



three columns are generated using exponential averages, all rows
contain values in each column, however, as with all exponential
averages, the initial data is more heavily weighted by early values, so
it may be desirable to skip a number of rows, corresponding to the
sum of the slow exponential average period and the smoothing period,
s + k, when performing your analysis.

Moving Average Oscillator — calculates the difference between the
moving average of m rows and n rows of the column selected and
places the results in the designated column. The first m-1 or n-1
(whichever is greater) rows are blank since the Moving Average
Oscillator is not defined for these rows.

Momentum — calculates the difference between the current value and
the value n rows previous in the column selected and places the results
in the designated column. The first n rows are blank since Momentum
is not defined for these rows.

On Balance Volume (OBV) — calculates the accumulation or
distribution of volume by adding the day's volume if it was an up day
or subtracting the day’s volume if it was a down day from a running
total. OBV is calculated using the Close and Volume columns and the
results are placed in the designated column. The first row is blank
since there is no previous value.

Rate-of-Change (ROC) — calculates the ratio as a percentage of the
current value and the value n rows previous in the column selected
and places the results in the designated column. The first n rows are
blank since the ROC is not defined for these rows.

Relative Strength Index (RSI) — calculates the RSI for period n using
the High, Low and Close columns and places the results in the three
designated columns. The RSI is an index computed from the ratio of
the total points in up movement on closing prices divided by the total
points of down movement on closing prices over the period n. The
values of the up closes are copied in the first column. The values of
the down closes are copied in the second column. The third column
contains the computed RSI. The first n-1 rows of the third column are
blank since the RSI is not defined for these rows.

Stochastic Oscillator — calculates the two Stochastic Oscillator values
%K, of period m, and %D, of period n, using the High, Low and Close

G.3 Using the Library 209



210

columns and places the results in the two designated columns. The
%K Stochastic Oscillator is computed by taking the difference of the
most recent close from the lowest low of the last m days divided by
the difference between the highest high and the lowest low of the last
m days. The %D Stochastic Oscillator is the n day moving average of
%K. The first m-1 rows of the %K column are blank since the %K
Stochastic Oscillator is not defined for these rows. The first m+n-1
rows of the %D column are blank since the %D Stochastic Oscillator
is not defined for these rows.

Volatility — calculates the Volatility for period n using the High, Low
and Close columns and places the results in the two designated
columns. The Volatility is an index computed from the moving average
of the “true range” over the period n. The true range is defined as the
greater of the difference between the High and Low of a day, the High
of the day and the Close of the previous day, or the Low of the day and
the Close of the previous day. The values of the true ranges are in the
first column. The moving average of the true ranges are in the second
column. The first row of the first column is blank since there is no
previous day. The first n rows of the second column are blank since
the Volatility is not defined for these rows.

Williams’ Ultimate Oscillator — calculates a weighted three period
average using the High, Low, and Close columns and places the
results in the three designated columns. The Ultimate Oscillator is
an index computed from the difference of the day’s Close and the “true
low”, this difference is then divided by the “true range”. The true low
is defined as the lesser of the Low of the day or the Close of the previous
day. The true range is defined as the greater of the difference between
the High and Low of a day, the High of the day and the Close of the
previous day, or the Low of the day and the Close of the previous day.
Finally, a fast, an intermediate, and a slow period moving averages,
with periods f, i, and s, are calculated from this ratio and recombined
with weighting inversely proportional to the three periods. The
weighting of the fast moving average is s/f, the weighting for the
intermediate moving average is s/i, and the weighting of the slow
moving average is 1. The first column contains the difference between
the Close and the true low. The second column contains the true range.
The third column contains the sum of the weighted moving averages.
The first row of the first two columns is blank since there is no previous

G.3 Using the Library



day. The first s rows of the third column are blank since the slow
moving average is not defined for those rows.

G.4 Updating Technical Indicators

Once a technical analysis application has been created and Neuralyst
has been trained on the data, it will be necessary to update the price
data on a regular, usually daily or weekly, basis.

One more command has been provided in TML to facilitate these
operations. Extend TML Rows will copy the last data row, including
price data, technical indicators, target formulas, output area, and
Mode Flag value, into the row below it. The row information in
Neuralyst and in TML will be updated to reflect this change. Once
you have entered the new price data, the indicators and other
formulas will be updated automatically. You can then perform a
Reload Network to update Neuralyst and train, test, or run with
the new data.

G.5 TML Error Messages

Close and Volume columns must be defined for this function.

This message appears for the OBV (On Balance Volume)
indicator. This indicator always works with Close and Volume
data. This message indicates that one or both of those columns
are not yet defined. Use the Set TML Columns command to
define the needed data columns.

G.5 TML Error Messages 2 1 1



Column "Open" has not been set. Please try again.

Column "High" has not been set. Please try again.

Column "Low" has not been set. Please try again.

Column "Close" has not been set. Please try again.

Column "Volume" has not been set. Please try again.

Column "Open Interest" has not been set. Please try again.

You have tried to apply an indicator to a column type which has
not been defined with the Set TML Columns command. Try
applying the indicator to a different column, or give the
Set TML Columns command again for the column type you
want.

Column heading "XXX" is not recognized, please try again.

This message appears for the Set TML Columns command,
when one of the column headings you have selected is not in the
list of headings that are recognized. Re-check your selected
column headings to make sure they correspond to those allowed
for this command.

High, Low, and Close columns must be defined for this function.

This message appears for the Stochastic Oscillator, Volatility,
and Williams’ Ultimate Oscillator indicators. These indicators
needs to have High, Low, and Close data to work with. This
message indicates that one or more of those columns are not yet
defined. Use the Set TML Columns command to define the
needed data columns.

Interval must be >= 1. Please try again.

This message appears for the Momentum and ROC
(Rate-of-change) indicators. It indicates that the value for the
Interval is invalid.

Multiple-row selection is not allowed here.

This message appears for the Set TML Columns command. The
selection needs to be one row high and to include only the column
headings. Make sure your selection is of this format, and try the
command again.

212 G.5 TML Error Messages



Number of rows selected < longest period. Please try again.

This message appears for the Williams’ Ultimate Oscillator.
There are fewer rows selected than the longest period of the
oscillator. No data can be generated under these conditions.
Increase the row selection or decrease the longest period.

Only a single column may be selected here.

This message appears for several of the indicators. Most
indicators produce only one column of output, and so only one
column should be selected before using them.

Period [Periods] must be >= 1. Please try again.

Several indicators produce this message. It indicates that one or
more values specified for the periods are invalid.

Periods must be increasing. Please try again.

The Williams' Ultimate Oscillator indicator produces this
message. It indicates that the sequence of periods set does not
have increasing values.

Set TML columns first.
Set TML rows first.

These messages appear if you try to use a TML indicator before
you have done both the Set TML Columns and the
Set TML Rows commands. Make sure both of those commands
have been given before trying to use indicators. The TML
information is saved in the Working Area, so future uses of the
library will re-use any row and column information you have set
previously.

The Close column must be defined for this function.

This message appears for the MACD (Moving Average
Convergence-Divergence) and RSI (Relative Strength Indicator).
They always works with Close data. This message indicates that
the Close column has not yet been defined. Use the
Set TML Columns command to define this data column.

G.5 TML Error Messages 213



Three columns must be selected here.

This message appears for the MACD (Moving Average
Convergence-Divergence), RSI (Relative Strength Indicator),
and Williams’ Ultimate Oscillator. These indicators use three
columns for output. Make sure your selection is three columns
wide and then try again.

Two columns must be selected here.

This message appears for the Stochastic Oscillator and
Volatility. These indicators use two columns for output. Make
sure your selection is two columns wide and then try again.

Unimplemented indicator

This message should not occur and indicates an internal problem
with the TML software.

You must make a continuous selection before using this function.

This message can appear for any TML command or indicator, if
you have selected a region that is not continuous before giving the
command. TML can only work with continuous regions for its
commands.

G.6 Technical Analysis Literature

214

Colby, R.W. & Meyers, T.A.; Encyclopedia of Technical Market
Indicators; Dow Jones-lrwin; Homewood, IL; 1988.

Kaufman, Perry J.; New Commodity Trading Systems and
Methods; John Wiley & Sons; New York, NY; 1987.

LeBeau, C. & Lucas, D.W.; Computer Analysis of the Futures
Market; Business One-lrwin; Homewood, IL; 1992.

Murphy, John J.; Technical Analysis of the Futures Market; New
York Institute of Finance; New York, NY; 1986.

Pring, Martin J.; Technical Analysis Explained (2nd Ed);
McGraw-Hill; New York, NY; 1985.

G.6 Technical Analysis Literature



NeuroVe$t Journal; Randall B. Caldwell; Haymarket, VA.

A bi-monthly magazine devoted to neural network techniques
and financial applications.

Technical Analysis of Stocks and Commodities; Technical Analysis
Inc, Seattle, WA.

A monthly magazine devoted to technical analysis techniques.

G.6 Technical Analysis Literature 2 15



2 16 G.6 Technical Analysis Literature



Index

#lnputColumns . .. .. .. ... ... ........ 151, 195
#lLayers . . . .. e e e 153
# Neurons per Layer . . ... . . ... ... ... ... 153
#Output Columns . . . ... ... ... ........ 151, 195
#TargetColumns . . . . . .. ... ... ........ 151, 195
Accuracy . . . . ... 47, 66, 74, 76-77, 117, 131
Activation Function
ChangesinV14 . . .. . . ... ... ... . ... . ... 3
Description . . . . . . .. ... . ... .. 17, 20
Hint .. ... ... .. .. . .. .. ... ..... 83, 130
See also Function Parameter
Activation Functions
AugmentedRatio . . . . ... ... ... ... ... .. 86
Gaussian . . . . .. e e 85
Hyperbolic . . . . . . . . . .. . 84
Linear . . . . . . . . . . 84
Sigmoid . . . ... 20, 83
Step . . e 86
Adaptive Learning Rate Parameter
Description . . . . . . .. .. ... ... ... 88, 129, 148
Hint .. ................... 88, 130-131, 149
Offsetin WorkingArea . . . . . ... ... ......... 195
Add Input Columns Command
Description . . . . . . .. .. ... .. . . ... 30, 108
Example . . . . ... ... ... . .. . 41, 53, 99
Message . . . . . . . . ... 185
Add Output Columns Command
Description . . . . . . ... .. ... ... 30, 109
Example . . . . . ... ... 41, 100
Message . . . . . . ... 185
Add Target Columns Command
Description . . . . . . .. ... ... ..., 30, 108-109
Example . . . . ... ... .. 41, 100
Message . . . . . . . 185

Index

217



Augmented Ratio Function

Description . . . . ... ... ... ....... 86, 128, 148

Hint . . . .. .. 131

NewinV14 . .. . ... . . ... .. 3
Auto Select DataOption . . . . . ... ... ... ..... 114-115
Auto Set Min/Max Option . . . . . . .. ... ... ...... 116
Auto Set RandomizationOption. . . . . . .. ... ...... 137
Automatic

Excel CalculationMode . . .. ... ... ... 13, 142, 217

Average error
See RMS Error Statistic

B Backpropagation . . . . ... ... .. 18, 21-22, 24, 83, 120
C Calculation
Excel CalculationMode . . . ... .. ... ...... 13, 142
Calculation Method Parameter
Description . . . . ... ... ... ... ..... 7, 129, 148
Hint . ... ... ... . . .. . .. ... .... 47, 130, 149
Message . . . . . . . . ... 169, 171
New inV1.4 . . . . . . . . e 3
Offset in Working Area . . . . . ... .. ... ...... 195
Calculation Rate
Hint . ... ...... 3, 7, 54, 74, 82, 127, 130, 149
Specification . . ... ... ... ... ... ... 190, 192
Charts

See also Histogram Weights Command
See also Plot Training Error Command

UsingExcel . . .. ... ... ... ......... 58, 88-89
Co-processor . . . ... 6-7, 129, 148
Column Commands

Add InputColumns . . . . ... ... ... ...... 30, 108

Add OutputColumns . . . .. ... ... ....... 30, 109

Add TargetColumns . . . . . . ... ... ... ...... 108

EditColumnlLists . .. ... ... ... ... ..... 31, 112

SetMode FlagColumn . . . . . . ... .. ......... 110
Column DescriptionBlock . . . . . . ... .. ... ... 106, 151

218 Index



Commands

Add InputColumns . . . . . . ... ... .. ..... 30, 108
Add OutputColumns . . . . .. ... ... ...... 30, 109
Add TargetColumns . . . ... ... ... ...... 30, 108
EditColumnlLists. . . . ... ... ... ....... 31, 112
EditMode Lists . . . . . . .. . .. .. ... ... 31, 115
Histogram Weights . . . . . . . . . .. ... ........ 139
InitWorkingArea . . . . . ... .. ... ....... 28, 105
Plot TrainingError . . . . . . . . .. ... ... ...... 135
Reload Network . . . . . . . . . . . .. ... ... ..... 119
ResetWeights . . . . . . . .. .. ... ... ... ..... 137
Run Genetic Supervisor . . . ... . ... ... ...... 122
Run/Predict with Network . . . . . . ... .. ... .... 121
SelectDataMode . . . .. ... ... ... ...... 31, 113
Set Enhanced Parameters . . . . . .. ... ... ..... 127
Set Genetic Parameters . . . . . . . ... ... ... ... 131
SetMode FlagColumn . . . . . ... ... ......... 110
SetMode Rows . . . . . . . . . . . . e 111
Set Network Parameters . . . . . . ... ... . ... 33, 124
Set Network Size . . . . . . . . . . . ... ... ... 31, 117
SetRows . . . . . . . . 29, 106
TrainNetwork . . . . . . . . . . .. . . ... ... 120
Unpack Weights . . . . . . . .. ... ... ...... 87, 140
Computation
See Calculation
ConfigurationMenu . . . .. ... ... ...... 105-118, 161
Counts
Generation Count Statistic . . . . . . ... ... ... ... 155
Structure Count Statistic . . . . . . .. ... ... ..... 155
Crossovers Parameter
Description . . . ... ... ... ...... 97-98, 133, 156
Message . . . . . . ... 171
Offsetin Working Area . . . . . .. ... ... ....... 196
Data Classification DialogBox . . . . . . ... ... .. .. .. 113
Data Mode
Select Data Mode Command . . . . . ... ... ....... 31
DDE (Dynamic Data Exchange) . . . . .. ... ... ... 196-197
DLL (Dynamic Link Library) . . . . . ... .. .. 160, 164, 184

Index 219



220

Index

Edit Column Lists Command

Description . . . . . ... ... ... ....... 31, 112-113
Hint . . . . . .. e 205
Message . . . . . . .. ... ... .. 174-176, 178-179, 181
Edit Mode Lists Command
Description . . . . . . . ... .. .. ... ... ... 31, 115
Hint . . . . . . . e 111
Message . . . . ... e e e 178-179
New inV1.4 . . . . . . . . e 3
Emigration
Pool Mode Parameter . . . . ... ... .. .. 96, 133, 156
Enhanced Parameters
Adaptive LearningRate . . . . ... ... ... 88, 129, 148
Calculation Method . . . . ... ... ... ..... 129, 148
ForceZero. . . . . . . . . . . . .. e 129, 148
Function . . ... . . . . . . . . .. . .. . ... . 128, 147
FunctionGain . . ... ... ... ... ....... 129, 148
Scaling Margin . . . ... ... .. ... .. 72-73, 130, 149
ZeroThreshold . . . . ... ... .. ... ...... 129, 148

See also Parameters
See also Set Enhanced Parameters Command
Epoch Limit Parameter

Description . . . ... ... ..... 35, 120, 126, 146-147
Hint . . . .. ... . . 103
Message . . . . . ... 173
Offsetin Working Area . . . .. ... ... ........ 195
Epochs
Description . . . . . . . . .. ... 120
Training Epochs Statistic . . . . . ... ... ....... 145
Epochs per Update Parameter
Description . . . . . ... ... ... .. 35, 120, 126, 146
Example. . . . . ... .. ... ... . ... 35, 41, 100
Hint . .. .. ... . . 127
Message . . . . . ... e e 173
Offset in Working Area . . . . . .. ... ... ...... 195
Error
and Network Learning . . . . . .. 21-23, 74-78, 120, 125
Least RMS Error Statistic . . . . . ... ... ....... 155
Plot Training Error Command . . . . . .. ... ... .. 135
RMS Error Statistic . . . . .. .. ... ... ... ... 144
Error Limit Parameter . . . . . . . .. . ... .. ... ... .. 77
Description . . . . . . ... ... ... .. ... 35, 126, 147
Hint .. ... .................. 103, 127, 135



Message . . . . . . . . .. 173

OffsetinWorkingArea . . . .. .. ... ... ....... 195
Usage . . . . o o o e 126
Examples
Chemistry . . ... ... ... ....... 25-27, 36-37, 39
CreditRater . . . . . . . . .. .. . . .. 52
Criminal Mugbook . . . . . ... .. ... .. ........ 48
Fundamental Stock Analysis . . . . . ... ... .... 58, 99
LogiC . . . . . 12
Marketing Analyzer . . . . . . . ... ... ... ... .. 55
Paper-Rock-Scissors . . . . . . . ... .. oo 44
Parity Generator . . . . . .. ... .. ... ... ... 40-41
Shape Recognizer . . . . . . . . . .. ... .. . 66
SineWave . . . . . ... 45
Technical Stock Analysis . . . ... ... ....... 63, 203
Excel CalculationMode . . . . . . . .. ... ... .... 13, 142
ExcelCharts . . . . . . . . . . . .. . .. ... 58, 88-89
First Row
Description . . . . . . . . . . .. 150
Hint . ... ... ... ... .. ... .. .. .... 163, 194
OffsetinWorkingArea . . . . ... ... ... ....... 195
Fitness Criteria Parameter
Description . . . . ... ... .. 99, 123, 134, 155, 157
Example . . . . . ... 102
Hint .. ... ... ................ 103-104, 134
Message . . . . . ... e 176
Offsetin WorkingArea . . . . ... ... ... ....... 196
Fitness Limit Parameter
Description . . . .. ... ... ..... 99, 123, 133, 157
Hint . . . ... 134
Message . . . . . . . . ... 176
Offsetin Working Area . . . . . .. ... ... ....... 196
Fixed Point
Message . . . . . . . . .. 171

See Calculation Method Parameter
See also Calculation Rate

Flags
Mode Flag Column? . . . . . . ... . ... .. ... .... 151
Set Mode Flag Column Command . . . . . . ... ... .. 110

Index 221



Floating Point
See Calculation Method Parameter
See also Calculation Rate

Force Zero Parameter

Description . . . . . .. . ... ... ... ... 129, 148
Hint . ... ... ... . . .. . .. ... . ... 130-131, 149
Offsetin Working Area . . . .. ... .. ......... 195
Function Gain Parameter
Description . . . . . .. .. ... . ... ... 129, 148
Hint . . . . . . . e 131
Message . . . . . . . . .o 169, 171
Offset in Working Area . . . . . .. ... ... ...... 195
Function Parameter
Description . . . . . .. .. .. .. ... ... 128, 147
Message . . . . . . .. 169
Offsetin WorkingArea . . ... ... ........... 195

See also Activation Function

G Gaussian Function
Description . . . . .. ... ... ... ..... 85, 128, 147
Hint . ... ... ... .. ... ... ..... 129, 131, 148
Generation Count Statistic
Description . . . . . . . . . . ... . 154-155
Example. . . . . ... . o 101-102
Offsetin WorkingArea . . . ... ............. 195
Genetic ParameterBlock . . .. ... ... ... ....... 155
Genetic Parameters
CroSSOVErS . . . . v v v v i e e e 97, 133, 156
FitnessCriteria. . . . . . . . . . . . . .. .. .... 134, 157
FitnessLimit . . . .. ... ... ........ 99, 133, 157
InclusionRate . .. ... ... ... ... ...... 132, 155
Max InputNoise . . . ... ... ........ 95, 132, 156
Max Momentum . . . . . .. ... ... . ... 95, 132, 156
Min LearningRate . . . . . ... ... ... .. 95, 132, 156
MutationRate . . . . . . . . . ... ... ... 98, 133, 156
PoolMode . . . . . . . .. . ... ... ..... 96, 133, 156
PoolSize . ... ... ... ... ........ 96, 133, 156

See also Parameters

See also Set Genetic Parameters Command
Genetic StateBlock . . . .. .. .. .. ... ... ... 157, 196
Genetic StatisticsBlock . . . . ... ... ... ... ..., 154

222 Index



Genetic Supervisor
Run Genetic Supervisor Command . . ... ... ... .. 122

Hidden Layers

Description . . .. .. 18, 117-118, 132, 134, 153, 155
Hint .. ................... 51-52, 68, 73-74
Histogram Weights Command
Description . . . ... ... ... ...... 139-140, 153-154
Macro . . . . . . . e 193
Message . . . . . . ... 181
Hyperbolic Function
Description . . . . . . ... ... ... ..., 84, 128, 147
Hint . . .. . . . 130
Message . . . . . ... e 171
NewinV14 . . .. .. . ... . . .. 3
Immigration
Pool Mode Parameter . . . . . ... ... 96, 133, 156, 217
Inclusion Rate Parameter
Description . . . . ... ... .. ... .. ..., 132, 155
Hint . ... ... ... ... . . ... .. ... 103, 134
Message . . . . . . ... 172
OffsetinWorkingArea . . . . ... ... ... ....... 195
Init Working Area Command
Description . . . .. . ... .. ... ... 28, 105-106, 177
Example . . . . ... .. .. 41, 99
Hint .................... 113, 162, 205-206
Message . . ... ... ... . ... ..., 174, 182, 185
Initial LimitOption . . . . . . . . ... ... ... ....... 137
Initial Select Testing Option . . . . . . . . ... ... ..... 114
Initial Select Training Option . . . . . . .. ... ... .... 114
InputColumns . . . ... . ... ... ... ..., 151, 195
Add Input ColumnsCommand . . . . ... ... ... 30, 108
Input Noise Parameter
and Genetic Training . . . . . . . . .. ... ... ...... 95
Description . . .. ... ... ... 34, 80, 125, 132, 146
Example . . . . . . . 67
Hint ............ 68-69, 127, 130-131, 149, 156
Message . . . . . . .. 172

Index 223



M

224

Offset in Working Area . . . . . .. ... ....... 195-

Invert Current Mode Option . . . . . . .. ... ... .....
Last Row

Description . . . . . . . . . . ... .

Hint . . . .. ...

Offset in Working Area . . . . . ... .. ... ......
Last Row Description

Hint . . . . . . . e
Learning Rate

Adaptive Learning Rate Parameter . . . . . . . 88, 129,
Learning Rate Parameter

and Genetic Training . . . . . . . . . .. .. ... ... .

and Network Learning . . . . .. .. ... ... .......

Description . . . . ... ... .. 22-23, 34, 125, 132,

Hint . .. ..... 74-75, 83, 127, 129, 144, 148,

Message . . . . ... e e

Offset in Working Area . . . . ... ... .. ..... 195-
Least Epochs Statistic

Description . . . . . . . . .. ... 154-

Example. . . . . . . . ...

Hint . . ... ... ... ... .. . .. .. ... 103-

Offset in Working Area . . . . . .. ... ... ......
Least RMS Error Statistic

Description . . . . . . . . ... ... ... ... ... 154-

Example. . . . . .. ..

Hint . . ... ... ... .. . . . . 103-

Offsetin WorkingArea . . .. ... ... .........
Limits

Epoch Limit Parameter . . . .. ... ... .. 35, 126,

Error Limit Parameter . . . . . . . . . .. 35, 77, 126,

Fitness Limit Parameter . . . . . . . . .. ... 99, 133,

Time Limit Parameter . . . . . ... ... ... 35, 126,
Linear Function

Description . . . . . ... ... ... ...... 84, 128,

Hint . ... ... ... .. ... ......... 129-130,
Manual

Excel CalculationMode . . . ... ... .. .. 13, 142,

Index

196
114

87
145
156
172
196

155
101
104
195

155
101
104
195

146
147
157
147

147
148

217



Margin
Scaling Margin Parameter . . . . . . ... ... ..
Math
See Calculation Method
Math co-processor . . . . . .. .. ... ... ... 6-7,
Max Input Noise Parameter . . . . . .. ... ... ..
Max Layers Parameter
Description . . . . . . . . ... .. ... ...
Message . . . . . . . . ...
OffsetinWorkingArea . . . ... ... .......
Max Momentum Parameter . . . . ... ... .....

Min Learning Rate Parameter . . . . . . ... ... ..
Min ScaleRow? . . . . . .. ... ... ... .. ... .
Mode Flag

Edit Mode ListsCommand . . . .. . ... .....

Mode Rows

Set Mode Rows Command . . . .. ... ......
Momentum Indicator . . . . . . ... .. ... ... ..
Momentum Parameter

and Genetic Training . . . . . ... ... ......

Description . . . ... .. 23, 34, 74-75, 125,
Example . . . . ... .. ...
Hint .. .................. 76, 127,
Message . . . . . . . . ..

Offsetin Working Area . . . ... ... .. .....
Mutation Rate Parameter

Description . . . ... .. ... ... ...... 98,

Hint . . ... ... ...

Message . . . . . . . . ...

Offsetin WorkingArea . . . . ... ... ......

Network

Set Network Size Command . . . . ... ... ...
Network DescriptionBlock . . . . .. ... ... .. ..
Network Parameters

Epoch Limit . . . ... ... . ... .........

EpochsperUpdate . . .. ... ...........

130, 149

129, 148
95, 156

132, 134

oL 172
... 195

95, 156
151, 195
95, 156
151, 195

31, 115
31, 113

. ... 110

151, 195

S N v

..... 95

132, 145

..... 46

144, 156

L. 172

... . 134

..... 31

106, 152

Index 225



226

Index

Error Limit . . . . . . . . . ..

InputNoise . . . . . . .. . .. ... .. 125

LearningRate . . ... . ... ... ... ......... 125

Momentum . . . . . . . ... e 125

Reload Network Command . . . .. ... ... ...... 119

TimeLimit . . ... ... .. ... . . . .. .. ..., 126

Training Tolerance . . . . . . . . . ... ... ....... 125

See also Parameters

See also Set Network Parameters Command
Network WeightsBlock . . . ... ... ... ...... 106, 153
NeuralMenu . . ... ... ... ....... 32, 119-141, 161
Neuron Limit Parameters . . . . . ... ... .. 132, 134, 196
Noise

Input Noise Parameter . . . . . ... .. 34, 80, 125, 146
Number of Data Items Statistic . . . . . . . ... .. .. 144, 194
Number of InputColumns . . . . ... ... ... .... 151, 195
NumberoflLayers . .. ... ... ... ... ... ...... 153
Number of NeuronsperLayer. . . . . . ... ... ... ... 153
Number of Output Columns . . . . . . ... ... .... 151, 195
Number of Rows

Description . . . . . . . . . . ... 150

Maximum specification . . ... ... ... .. .... 190-191

Offsetin Working Area . . . .. ... ... ........ 195
Number of Target Columns . . . . . ... ... ..... 151, 195
Number Right Statistic . . . . ... ... .. ... 37, 144, 194
Number Wrong Statistic . . . . . ... ... ... .... 144, 195
NWTL (Neuralyst Working area Top Left)

Description . . . . . . . . ... .. 194

Hint .. ... ... ... .. .. ... ...... 162-163, 196
Offset

RowOffset . . ... ... ... ... ......... 107, 150
OutputColumns . . . . . ... ... ... ........ 151, 195

Add Output Columns Command . . . ... .. .... 30, 109
Overtraining

Description . . . . . . . ... ... ... ... ... 51, 77

Hint . ... ......... 34, 77, 79-80, 126, 136, 147



Parameter Block . . . . ... ... ... ... ..... 106, 145
Parameters

Adaptive LearningRate . . ... ... .. ... 88, 129, 148
CalculationMethod . . . . . ... ... ... .... 129, 148
CroSSOVEIS . . . . . v v v o i e e e e e e 97, 133, 156
Epoch Limit . . ... ... ............ 35, 126, 146
Epochs perUpdate . . .. ... ... ...... 35, 126, 146
Error Limit . . . ... ... ... ..... 35, 77, 126, 147
FitnessCriteria . . . . . . . . . . . .. ... .... 134, 157
FitnessLimit . . . .. .. .. .. ... ..... 99, 133, 157
ForceZero . . . . . . . . . . . e 129, 148
Function . . . . . . . . . .. .. ... ... . ..., 128, 147
FunctionGain . . . . . . . . . . . . . ... ..... 129, 148
InclusionRate . . . . . ... ... ... ... .... 132, 155
InputNoise . . . ... ... .. .. 34, 80, 125, 132, 146
LearningRate . . . . . ... .. 34, 74-75, 125, 132, 145
Max Input Noise . . . . ... ... ... ....... 95, 132
Max Momentum . . . . . . . . . . . . ... ... .. 95, 132
Min LearningRate . . ... ... ... ........ 95, 132
Momentum . .. ... ... .. 34, 74-76, 125, 132, 145
MutationRate . . . . . .. .. .. .. ... ... 98, 133, 156
PoolMode . . ... ... ... ... ....... 96, 133, 156
Pool Size . . . . . . . . . . ... ... 96, 133, 156
Scaling Margin . . .. ... ......... 72-73, 130, 149
Testing Tolerance . . . . . . .. ... ...... 34, 125, 146
TimeLimit. . . ... ... ... ... ...... 35, 126, 147
Training Tolerance . . .. .. .. 34, 76-77, 79, 125, 146
ZeroThreshold . ... ... ... ... ....... 129, 148

See also Reload Network Command

See also Set Enhanced Parameters Command
See also Set Genetic Parameters Command
See also Set Network Parameters Command

Pattern

Rows/Pattern . . . . . . . . . . .. .. ... .... 107, 150
Percent Right Statistic

Description . . . . . . . . . ... 144

Example . . . . . ... ... 36-37
Percent Wrong Statistic . . . ... ... ... ......... 144
Performance

See Calculation Rate

Plot Training Error Command
Description . . . . . . .. ... oo 135
Example . . . . . .. . 41

Index 227



228

Macro . . . . . . . 193

Message . . . . ... e e 177
Plots

UsingExcel . . .. ... ... ... ......... 58, 88-89

See also Histogram Weights Command
Pool Mode Parameter

Description . . . . . . .. ... ... .... 96-97, 133, 156

Example. . . . . . ... 102

Hint . . ... ... . . 104

Offset in Working Area . . . . . ... .. .. ....... 196
Pool Size Parameter

Description . . . . ... .. ... ..... 96, 133, 155-156

Example. . . . . .. . 100

Hint . ... ... ... .. ... ......... 103-104, 134

Message . . . . . .. e 173

Offset in Working Area . . . . . . ... ... ....... 196
Population

See Pool Mode or Pool Size
Pre-process . . . . . . . . . . ... ... ... 63, 65, 71
Predict

Run/Predict with Network Command . . . . . .. ... .. 121
Random

Weight randomization options . . . . ... ... .. ... 137
Random Select DataOption . . . . . . . .. ... ... .... 114
Rates

Adaptive Learning Rate Parameter . . . . . . . 88, 129, 148

Inclusion Rate Parameter . . . . . .. .. .. .. .. 132, 155

Learning Rate Parameter . . . . . . . 34, 74-75, 125, 145

Mutation Rate Parameter . . . . . . . . .. .. 98, 133, 156
Reload Network Command

Description . . . . .. ... ... ... ..... 119-120, 177

Example. . . . . . . . 13

Hint . ................. 43, 136, 162-164, 211

Macro . . . . . . e e 193

Message . . . . . . . ... ... 174, 179, 183, 185
Reset Weights Command

Description . . . . . . . ... ... ... .. 137, 177

Hint . . . . . ... . 52

Message . . . . . . .. ... 173, 179-181

Index



Right

Number Right Statistic . . . . ... ... ... ....... 144
Percent Right Statistic . . . . ... .. ... ........ 144
RMS Error Statistic
and Genetic Training . . . . . . .. 98-99, 133-134, 155-156
and Network Learning . . . ... ... .. 88, 126, 147-148
Description . . . . . . . . . . .. ... . 144
Example . . . . ... ... ... . ... . 13, 36, 41
Hint .. ... ... ................ 127, 135-136
OffsetinWorkingArea . . . ... ... ... ........ 194
Optimizing . . . . . . . . . . . 93
Row DescriptionBlock . . . . .. ... .. .. ... .. 106, 150
Row Offset
Description . . . . . . . ... ..o 107, 150
Example . . . . . . .. 67
Offsetin WorkingArea . . . .. ... ... ......... 195
Rows
Max Scale Row? . . . . . . . . . ... 151
Min ScaleRow? . . . . . . . . . . . . .. .. ... 151
Set Mode Rows Command . . . . ... ... ... ..... 111
SetRowsCommand . . . . . ... .. .. .. ..... 29, 106
Symbol Row? . . . . . .. ... 152
Rows/Pattern
Description . . . . . . .. ... ... . ... 107, 150
Example . . . . . .. ... 64, 67
Maximum number . . . ... ... .o L 190
Maximum specification . . . . . ... ... ... ... ... 191
Offsetin Working Area . . . . . .. ... ... .. ..... 195
Run Genetic Supervisor Command
Description . . . . . . . ... .. 122-123
Hint . ... ... ... ... .. ... .. ...... 110, 194
Message . . . . . . . . . 170-171
NewinV14 . . . . . . ... . . . e 3
Run/Predict with Network Command
Description . . . . . . . . . ... 121
Example . . . . . ... ... ... 36, 50, 54, 102
Hint .. ... ... .. .. ... .. . . 110, 151
Macro . . . . . . .. 193
Message . . . . . . .. 181

Index 229



Scaling

Description . . . . . . . .. .. .. ... ... 71-73
Max Scale Row? . . . . . . . . . ... ... ... ... 151
MinScaleRow? . . . . . . . . . . . .. .. ... ... ... 151
Scaling Margin Parameter
Description . . . . ... .. ... ...... 72-73, 130, 149
Hint . ... .. ............... 47, 130-131, 149
NewinV14 . ... . . . . . . . . e 3
Offset in Working Area . . . . . ... .. ... ...... 195
Select Data Mode Command
Description . . . . ... .. ... ... ..... 31, 113, 115
Message . . . . . . . ... 172, 180
Set Enhanced Parameters Command
ChangesinV14 . ... .. ... . .. .. ... .. ... ... 3
Description . . . . . . . . .. ... 127-128
Hint . ... ... . 47, 123
Message . . . . . . . ..o 169, 171
Set Genetic Parameters Command
Description . . . ... ... ... ...... 122-123, 131-132
Example. . . . . . ... 100
Hint . . . . . . . e 134
Message . . . . . . . . ..o 170-173, 176-177
NewinV1.4 . . . . . . . . . e 3
Set Mode Flag Column Command
Description . . . . . . . . . ... 110
Example. . . . . . . ... ... 45, 100
Hint . ... ... .. . 112, 116
Message . . . . . . .. 170
NewinV14 . .. . . . . . . . . e 2
Set Mode Rows Command
Description . . . . . . . ... .. ... L. 111-112
Example. . . . . ... ... 45, 100
Hint . . . . . . . 116
Message . . . . . . . . . . .. ... ... 170, 180-181
New inV1.4 . . . . . . . . e 2
Set Network Parameters Command
Description . . . . . ... ... ...... 33, 124-125, 145
Example. . . . . . .. ... 41, 100
Hint . . . . . . . . e 123
Message . . . . . . . ... 173, 185
Set Network Size Command
Description . . . . . ... ... ... 31, 117-118, 153, 177

Example. . . . . ... ... ... ... ... 41, 43, 67, 100



Hint .. ...... ... ... ....... 113, 163, 194

Message . . ... ....... 171, 177-178, 180, 182-183
Set Rows Command

Description . . . ... ... ...... 29-30, 106-107, 109

Example . . . . .. .. ... ... . . 41, 67, 99

Hint .. ................... 64, 108-110, 163

Message . . ... ... 170, 172-173, 175, 180, 182, 185
Set TestFlag Column Command

RemovedinV14 . .. ... .. .. .. . ... . ..., 2
Sigmoid Function

Description . . . . . . ... ... ... ... .. 83, 128, 147

Example . . . . . .. 20

Hint .. .......... ... ......... 129-130, 148
Size

Set Network Size Command . . . . .. ... ... ..... 117
Statistics

GenerationCount . . . . . . . . ... ... .. 155

Number of Data Items . . . . . . . . . ... ... ..... 144

NumberRight . . . . . .. ... ... ... ... ...... 144

NumberWrong . . .. ... .. ... ... ......... 144

PercentRight . . . . .. ... ... . ... ......... 144

PercentWrong . . . . . . . . .. ... ... ... ..., 144

RMSError. ... ... ... .. ... ... 144

StructureCount . . . . . . . . . . ... 155

TrainingEpochs . . . . . . . ... ... ... oL 145
StatisticsBlock . . . . ... ... ... ... 106, 120-121, 144
Step

See Epoch
Step Function

Description . . . . . . .. ... ... ..., 86, 128, 147

Hint . . .. ... . 130
Stock Analysis

Example . . .. ... ... ... 58, 63, 99, 203
Structure Count Statistic . . . . . . .. .. ... ... ... 154-155

Example . . . . . .. 101

Offset in Working Area . . . . . .. ... ... ....... 195
Supervisor

Run Genetic Supervisor Command . . . . . ... ... .. 122
Symbol Row? . . . . . .. ... 152

Example . . . . . .. .. . 45

Offsetin Working Area . . . . . . ... ... ... ..... 195
Symbolic Representation . . . . . ... ... .. 31, 72, 115-116

Description . . . . . . . . .. 36

Index 231



232

Example. . . . . .. ... .o 44, 48, 67

Message . . . . . . .. .. ... ... 170, 175-176, 179-180

NewinV314 . .. . . . . . 3
TargetColumns . . . . .. .. ... ... . ....... 151, 195

Add Target Columns Command . . . . ... ... ... 30, 108
TestFlag

See Mode Flag
Testing Tolerance Parameter

Description . . . . . ... ... ..... 34, 121, 125, 146

Example. . . . . .. .. 54

Offset in Working Area . . . . . ... .. ... ...... 195
Threshold . . . . . . . . . . . . . . e 87

See also the entry for that parameter

Zero Threshold Parameter . . . . . . . .. ... ... 129, 148
ThresholdValue . ... ... .. ... ... .. ........ 141
Time Limit Parameter

Description . . . . . . ... ... ... ... .. 35, 126, 147

Hint . . .. .. ... . 103, 127

Message . . . . . ... 173

Offsetin Working Area . . . . ... ... ......... 195
TitleBlock . . . . . . . . ... ... 106, 143
Tolerance

Testing Tolerance Parameter . . . . . ... .. 34, 125, 146

Training Tolerance Parameter . 34, 76-77, 79, 125, 146
Train Network Command

Description . . . . . . . .. . ... ... 120
Example. . . . . ... ... ... ... ... 13, 36, 54, 102
Hint . . ... ... ... .. . .. . .. ... .... 110, 151
Macro . . . . . . 193
Message . . . . . . .. 181
Training Epochs Statistic . . . . ... ... ....... 145, 195
Training Error
Plot Training Error Command . . . . . ... .. ... .. 135
Training Tolerance Parameter
Description . . . . .. 34-35, 76, 120, 125, 127, 146-147
Example. . . . . ... . ... ... 41, 47, 50-51
Hint ... ............... 52, 76-77, 79, 81, 89
Offset in Working Area . . . . . ... .. ... ...... 195

Index



Unpack Weights Command

Description . . . . . ... ... ....... 140-141, 153-154
Hint . . . . .. 87
Macro . . . . . . . . 193
Message . . . . . ... e 181
User Set Min/Max Option . . . . . . . .. ... ........ 116
User Set Randomization Option . . . . . ... ... .. .... 137
Valid? . . . . . 153
Weight
Description . . . . .. ... ... ... . ..., 17, 20-23
Weights
and Network Learning . . . . ... ... . ... 78, 83, 125
Description . . . . . . ... .. . ... . .. .. 120-121
Hint . . .. ... 129
Initial . . . ... . ... 118
Maximum specification . . . . ... ... ... ... 189, 191
Message . . .. .. .. ... ... e 177-178, 183
Storage . . . . ... .. ... ... 106, 119, 153
Train Network Command . . ... ... .......... 121

See also Histogram Weights Command
See also Reset Weights Command

See also Train Network Command

See also Unpack Weights Command

Working Area
ChangesinV14 . . .. .. .. .. .. ... ... ... 2
Description . . . . . . . .. ... 142-158
Hint .. ............... 193-194, 197, 205, 213
Init Working Area Command . . . . . ... .. ... 28, 105
Reload Network Command . . . . . . ... . ... ..... 119
Zero
Force Zero Parameter . . . . . . . . . . .. ... .. 129, 148
Zero Threshold Parameter
Description . . . . . . ... .. ... . ... 129, 148

Index 233



234

Index

Hint . .
Message

Offsetin WorkingArea . . .. ... ... .........



	Title
	Contents
	Chapter 1 Introduction
	1.1 Introduction for New Users
	1.2 Changes and Improvements in V1.4

	Chapter 2 Installing Neuralyst
	2.1 About this Manual
	2.2 Neuralyst Distribution
	2.3 System Requirements
	2.4 Installation Procedure
	2.5 The First Neuralyst Session

	Chapter 3 Basic Concepts
	3.1 Real Neurons
	3.2 Neural Network Structure
	3.3 Neural Network Operation
	3.4 Neural Network Learning

	Chapter 4 Tutorial
	4.1 Starting Neuralyst
	4.2 Configuring the Neural Network
	4.3 Running the Neural Network
	4.4 Finishing Up

	Chapter 5 Learning More
	5.1 Parity Generator
	5.2 Paper-Rock-Scissors Game
	5.3 Sine Wave
	5.4 Criminal Mugbook
	5.5 Credit Rater
	5.6 Marketing Analyzer
	5.7 Fundamental Stock Analysis
	5.8 Technical Stock Analysis
	5.9 Shape Recognizer

	Chapter 6 Advanced Topics
	6.1 Input and Output Value Ranges
	6.2 Setting Network Size
	6.3 Learning Rate, Momentum, and Training Tolerance
	6.4 Learning, Weights, and Multiple Solutions
	6.5 Some Causes of Poor Results
	6.6 Experimenting with Enhanced Neural Networks
	6.7 Excel Charts and Neuralyst

	Chapter 7 Genetic Optimization
	7.1 Genetic Technology
	7.2 Operation of the Genetic Supervisor
	7.3 Structure Strings and Features
	7.4 Population Management
	7.5 Genetic Operators
	7.6 Fitness Criteria
	7.7 Genetic Supervisor Tutorial
	7.8 Operating Techniques

	Chapter 8 Operations Reference
	8.1 Neural Network Configuration Menu
	8.2 Neural Network Operations Menu
	8.3 Neuralyst Working Area

	Appendix A Help Me!
	A.1 Installation Problems
	A.2 Neuralyst Problems

	Appendix B Error Messages
	Appendix C Customer Service
	Appendix D Specifications
	D.1 Windows Specifications
	D.2 Macintosh Specifications

	Appendix E Macro Interface Specifications
	E.1 Neuralyst/Excel Macro Interface
	E.2 Referencing the Working Area
	E.3 Windows DDE Interface
	E.4 Macintosh Apple Events Interface

	Appendix F Reading List & Bibliography
	Appendix G Trader's Macro Library
	G.1 Support for Technical Analysis
	G.2 Enabling and Disabling the Library
	G.3 Using the Library
	G.4 Updating Technical Indicators
	G.5 TML Error Messages
	G.6 Technical Analysis Literature

	Index



